

Water quality prediction mapping with the Groundwater Assessment Platform (GAP)

Joel Podgorski, Jay Matta, Ruth Arnheiter, Michael Berg

Contact: joel.podgorski@eawag.ch

Swiss Agency for Development and Cooperation SDC

International Conference on Geology, Mining, Mineral and Groundwater Resources of the Sub-Saharan Africa Livingstone, Zambia, 12 July 2017

Geogenic (natural) groundwater contamination

- Geogenic contamination is widespread, affecting up to 10% of wells worldwide
- Over 300 million people globally are exposed to high levels of arsenic (As) and fluoride (F)
- Little is being done to combat the situation in low-income countries

Fluoride (~200 million) causes dental mottling & decay and crippling skeletal deformation WHO: 1.5 mg/L

Various regions discovered in recent years

But large areas are still uncharted

1st-generation global risk map for **As** >10 μg/L

Detailed model, Southeast Asia

Winkel et al., Nature Geoscience, **2008**

Concept of geostatistical prediction modeling

Concentration data

Geo-statistical modeling

Identifying risk areas

Relevant geospatial data

- Increasingly available in digital GIS format
- Often free of charge
- Resolution and coverage increasing

Logistic regression

Gives the probability of a binary (0 or 1) target variable being "positive" (i.e. true or 1) for a linear combination of predictor variables:

$$P(x) = rac{1}{1 + e^{-(eta_0 + eta_1 x)}}$$

where P is probability, β is a regression coefficient, x is an independent variable.

Groundwater Assessment Platform

www.gapmaps.org

Free, interactive online GIS platform for **mapping**, **statistical modeling** and **dissemination** of information on geogenic groundwater contamination

- Mapping
- Modeling
- Sharing
- Wiki

Visualize, analyze, share data and knowledge

PUBLIC

View existing models and data

PRIVATE (login)

- Upload, display & share own data
- Create own predictive model

COMMUNITY

 Share data and models with usercreated communities

Modify point symbology

- Change shape and color of points
- Add filters to control what to display

Share data publicly

Example: arsenic concentrations from Mexico

Statistical modeling

Model output in GAP

Statistics with different cutoff values

Pakistan arsenic study

Predictor variables

Modeling comparison: manual coding vs. GAP

Arsenic prediction map for Pakistan created offline with the R language

Arsenic prediction map for Pakistan created on GAP

Podgorski et al., 2017, in review

Modeling comparison: China

Arsenic prediction map for China created offline

Arsenic prediction map for China created in GAP

Rodríguez-Lado et al., 2013

→ Very similar results between modeling via manual coding and modeling with GAP

Thank you

www.gapmaps.org

Goal to reduce number of people affected

- Water treatment, covered in the Geogenic Contamination Handbook (at www.gapmaps.org)
- Identify contaminated regions through prediction modeling

The following gaps have been identified:

- Gaps in knowledge of potential arsenic and fluoride contamination
- Gaps in expertise to create and manage data
- Gaps in opportunity to share and exchange information

Background to GAP

 GAP was launched in mid-2014 and is funded by Swiss Agency for Development and Cooperation (SDC) until end of 2017

GAP is a follow-up to the Water Resource Quality (WRQ) project

(2006-2012), which:

 focused on detection & mitigation of geogenic contaminants (As, F) in groundwater;

 culminated in the publication (2015) of the Geogenic Contamination Handbook

 Both projects initiated/led by the late Annette Johnson

1st-generation global risk map for **F** >1.5 mg/L

WHO-Unicef synthesis on drinking water, 2011

GAP risk maps featured in chapter on water safety

Print PDF of area of interest

→ Can also export GIS layer of own data/models

Communities

Share data and models with a select group of users

Help

Additional functionality when logged in

GAP Wiki – help to expand the compendium

gapmaps.org

Features the Geogenic Contamination Handbook

Read/add/edit pages on the subject of geogenic contamination