Scale of global water crisis could be unknown due to inadequate metrics, study suggests #worldwaterday

Re-posted from UCL

A new study by UCL researchers exposes substantial limitations in the ability of current metrics to define ‘water scarcity’.

 

21 March 2017

A new study by UCL suggests the scale of the global water crisis could not be properly known at due to inadequacies with the current metrics used to measure it.

With today being World Water Day, the research, led by the UCL Institute for Sustainable Resources and UCL Geography, exposes substantial limitations in the ability of current metrics to define ‘water scarcity’.

The report finds that the misrepresentation of freshwater resources and demand is particularly severe in low-income countries of the tropics where the consequences of water scarcity are projected to be most severe and where most of the global population now live. Simply put, the authors argue that we do not know the dimensions of the global water crisis.

Ensuring the availability of adequate quantities of freshwater to sustain the health and well-being of people and the ecosystems in which they live, remains one of the world’s most pressing challenges. This question is reflected in UN Sustainable Development Goal 6.4 which seeks to reduce the number of people suffering from water scarcity.

The authors call for a renewed debate about how best to measure ‘water scarcity’ and argue that it be redefined in terms of the freshwater storage required to address imbalances in freshwater supply and demand. Such an approach, they contend, would enable for the explicit consideration of groundwater, the world’s largest accessible store of freshwater which accounts for nearly 50% of all freshwater withdrawals globally.

Further the authors suggest that such a metric could be used pragmatically to explore a wide range of options for addressing freshwater storage requirements beyond dams alone that include use of renewable groundwater, soil water, and trading in virtual water.

Prof Richard Taylor, co-author of the paper says:

“How we understand water scarcity is strongly influenced by how we measure it. Grossly misrepresentative measures of water scarcity can identify scarcity where there is sufficient and sufficiency where there is scarcity. An improved measure of water scarcity would help to ensure that limited resources are better targeted to address where and when water-scarce conditions are identified.”

Click here to download the paper

Authors:

Simon Damkjaer, UCL Institute for Sustainable Resources
Prof Richard Taylor, UCL Department of Geography

UPGro GroFutures: http://grofutures.org/

Photo: Irrigated maize crop supplied by groundwater in Zambia – Richard Taylor

New pollution risk maps for Africa to help with achieving safe water for everyone

Africa_Risk_map

Media Release: World Water Day 22 March

New pollution risk maps for Africa to help with achieving safe water for everyone.
Responding to UNICEF/WHO report on Safely managed drinking water

The United Nations Children’s Fund (UNICEF) and the World Health Organisation (WHO) have published a key Joint Monitoring Programme (JMP) report on “Safely managed drinking water”[1]. It explains the way that the progress in improving drinking water will be measured across the world in pursuit of the Sustainable Development Goal Target 6.1 of achieving universal and equitable access to safe and affordable drinking water for all by 2030[2]. This is an immensely challenging target, particularly in many countries in Sub-Saharan Africa, which failed to reach the Millennium Development Goal Target of halving the number of people without access to an “improved” water source between 1990 and 2015.

For governments, aid agencies and citizens, a key question has been – what do we mean by “safe” water? This new JMP report starts to provide some of those answers. They define it to mean water that is “free from pathogens and elevated levels of toxic substances at all times”.  For many areas, the most accessible safe water is from the ground – from boreholes, wells and springs. But this is not the case everywhere.

There is no question about the importance of groundwater in sub-Saharan Africa, where it provides drinking water supplies for at least 170 million people. In comparison with surface water, groundwater is widely known for its greater reliability, resilience to climate variations and reduced vulnerability to pollution. However, groundwater contamination does occur when waste from households, municipalities, livestock, agriculture, hospitals and industries (including mining) is able to make its way Inadequate management of household and industrial waste is leading to the pollution of groundwater resources in urban centres in sub-Saharan Africa.

In a new landmark study just published[3], reviewed all the available data and studies on urban groundwater across the continent and build up a map of aquifer pollution risk (Fig. 1)

The lead researcher, Dr Daniel Lapworth, of the British Geological Survey, said: “Despite the risk to the health of millions of people across the continent, very little is routinely monitored. If there is any chance of achieving the Sustainable Development Goal targets – and adapting to climate change – it is essential that governments and water utilities routinely monitor groundwater quality and take appropriate action to protect their precious water resources.”

“However, we are excited that our research through has developed a low-cost and robust way for measuring groundwater quality[4], and this approach is being rolled out in our work in Africa and India.”

Africa_Risk_map
Fig. 1: Relationship between urban centres in sub-Saharan Africa (SSA) and estimated aquifer pollution risk using an intrinsic aquifer modelling approach (Ouedraogo et al. 2016). The location of studies included in the paper are shown. Major cities in SSA are shown and are from the ESRI cities dataset (2006)

More information

UPGro is funded by UK Aid; the UK Natural Environment Research Council (NERC); and the UK Economic and Social Research Council (ESRC). Knowledge Broker: Skat Foundation, in partnership with the Rural Water Supply Network (RWSN) www.rural-water-supply.net

For more information:

NERC media office
01793 411939 / 07785 459139 /  pressoffice@nerc.ac.uk

More details can be found on http://upgro.org ; The Knowledge Broker for UPGro is Skat Foundation, based in St Gallen, Switzerland. Contact: Sean Furey (sean.furey@skat.ch ) for more information.

[1] https://data.unicef.org/resources/safely-managed-drinking-water/

[2] https://sustainabledevelopment.un.org/sdg6

[3] Lapworth, D.J., D. C. W. NkhuwaJ. Okotto-OkottoS. PedleyM. E. StuartM. N. TijaniJ. Wright “Urban groundwater quality in sub-Saharan Africa: current status and implications for water security and public health” Hydrogeol J (2017). doi:10.1007/s10040-016-1516-6

[4] Sorensen J, D.J. Lapworth, B.P. Marchant, D.C.W. Nkhuwa, S. Pedley, M.E. Stuart, R.A. Bell, M. Chirwa, J. Kabika, M. Liemisa, M. Chibesa (2015) “In-situ tryptophan-like fluorescence: A real-time indicator of faecal contamination in drinking water supplies” Water Research, Volume 81, 15 September 2015, Pages 38–46

@engineer4change : Charitable Foundations Have a Unique Opportunity to Change the WASH Sector

In a recent Engineering for Change (E4C) article, “Charitable Foundations Have a Unique Opportunity to Change the WASH Sector”, UPGro Hidden Crisis research was cited  in making the case for stronger efforts by charities and funders to focus on the sustainability of what they fund:

The Unlocking the Potential for Groundwater for the Poor (UPGro) research project piloted a methodology in Uganda to uncover the causes of water point failure. The pilot study report found that “there is limited data or analysis on why sources are non‐functional and therefore little opportunity to learn from past mistakes” (Bonsor 2015).

The Hidden Crisis consortium project is currently addressing these knowledge gaps in its work in Ethiopia, Malawi and Uganda.

E4C, based in the USA, is a global knowledge & media hub for tech & global development that connects and informs  more than 1,000,000+ #tech4dev practitioners worldwide.

The Economist: An innovative cure for broken water pumps in Africa

An article published yesterday in The Economist has highlighted the role of innovative use of technology to unlock the potential of rural water service delivery in Africa. They report on the work being done by the Gro for GooD team, led by Oxford University, that is showing that by reducing pump downtime from an average of 27 days to less than 3, people’s willingness to pay for the water service increases five fold.

If you would like to know more about the innovative ‘Smart Handpump’, featured in a BBC article this week, and Fundifix enterprise, then you can find links to papers, presentations and films on the Gro for GooD page.

Piecing together Africa’s groundwater history

The UPGro programme, supported by AfriWatSan & ESPRC, conducted a pan-African capacity-strengthening and knowledge co-production workshop at Sokoine University of Agriculture in Morogoro, Tanzania from the 10th to 12th of February, 2017.

40 participants from 12 countries in Africa took part and analysed multi-decadal, groundwater-level data (“chronicles”) from 9 countries including Benin, Burkina Faso, Ghana, Niger, Sénégal, South Africa, Tanzania, Uganda and Zimbabwe.

Continue reading Piecing together Africa’s groundwater history

A BRAVE new approach to community climate resilience

re-posted from UPGro BRAVE

The Fifth International Conference on Climate Services (ICCS 5) is the premier global event for Climate Services Partnership in Africa.  This year’s conference will take place in Cape Town, from February 28 until March 2, 2017, and focuses on capacity building and forging connections, with a particular focus on activities and persistent challenges in Africa.
Continue reading A BRAVE new approach to community climate resilience

BBC: ‘Good vibration’ hand pumps boost Africa’s water security

Published: http://www.bbc.com/news/science-environment-39077761

The simple up-and-down motion of hand pumps could help scientists secure a key water source for 200 million people in Africa.

Growing demand for groundwater is putting pressure on the resource while researchers struggle to accurately estimate the future supply.

But a team from Oxford University says that low-cost mobile sensors attached to pumps could solve the problem.

Their study shows that pump vibrations record the true depth of well water.

Continue reading BBC: ‘Good vibration’ hand pumps boost Africa’s water security

a BRAVE new world…now online

The UPGro Consortium project, BRAVE has launched a brand new website to show case the fantastic work that the team – led by Reading University, in the UK is doing. BRAVE, or to use its more descriptive-but-not-so-catchy name: “Building understanding of climate variability and environmental change into planning of groundwater supplies from low storage aquifers in Africa” is focusing research on aquifers in Ghana and Burkina Faso.

The big idea behind BRAVE is  that we can build better ways to model and communicate the complex environmental changes in the Sahel region of West Africa and use that to improve the long term planning of groundwater supplies and provide early warnings of groundwater shortages so that the most vulnerable families and communities are more resilient to drought.

The team held their 2017 Annual General Meeting between 24 – 26 January and you can find full details on the new website, so be BRAVE and dive in!

Presentations:

introducing-upgro-brave_2017-brave-agm

understanding-vulnerability_brave-wp1

understanding-policy-context-and-changing-socio-ecological-environment_brave-wp2

improved-understanding-of-groundwater_brave-wp3

improved-strategic-planning-and-adaptive-capacity_brave-wp4

african-groundwater_brave-2017-agm

How far has devolution come in Kenya?

There is more to UPGro than rocks… for groundwater to benefit the poor, African governments need evolve and improve. Johanna Koehler, a doctoral researcher at Oxford University (Gro for GooD), reports on her experiences last year with Kenya at The Third Annual Devolution Conference,  Meru, Kenya, April 2016

statement-at-devcon
Johanna Koehler giving a statement (Photo: Oxford)

Devolution is here to last! This message was delivered loud and clear at the Third Annual Devolution Conference in Kenya, organised by the Council of Governors. In three years this conference has become an important gathering of national and county government representatives, academia, private sector and civil society to discuss the benefits and challenges of devolution. A brief I wrote on water policy choices of Kenya’s 47 county governments sparked interest among national and county governments and led to an invitation to share key findings at the conference to an audience of over 6,000 people.

Continue reading How far has devolution come in Kenya?

On the road to resilience in Ethiopia

by Barry Hague, NERC (re-blogged from NERC Planet Earth)

It’s time to rethink roads. In the vital fields of flood prevention and water supply, they offer incredible potential to enhance and enrich the lives of some of the world’s poorest people. Dr Frank van Steenbergen of the Roads for Water consortium is helping to drive this remarkable revolution.

Continue reading On the road to resilience in Ethiopia