Groundwater in Sub-Saharan Africa – special issue of Hydrogeology Journal

The IAH Hydrogeology Journal has published a special issue focusing on groundwater in Sub-Saharan Africa and good overview is provided in the online Preface.

The main UPGro contributions are:

Prof. Dan Olago (University of Nairobi / Gro for GooD) Constraints and solutions for groundwater development, supply and governance in urban areas in Kenya

Dr Callist Tindimugaya (MWE Uganda / UPGro Ambassador) Review: Challenges and opportunities for sustainable groundwater management in Africa

New state-of-the-art research collection on groundwater sustainability across Sub-Saharan Africa

An important new collection of papers has just been published online in the Hydrogeology Journal:

Substantial increases in groundwater withdrawals are expected across Sub-Saharan Africa to help nations increase access to safe water and to amplify agricultural production in pursuit of UN SDG 2 and SDG 6.  Long-term groundwater-level records or chronicles play an important role in developing an improved understanding of the hydrogeological and climatic conditions that control access and sustain well yields, informing where, when and how groundwater withdrawals can sustainably contribute to building resilience and alleviating poverty.

There are four papers in the collection (and an overview essay) that provide a sample of the new research outputs emanating from The Chronicles Consortium and UPGro GroFutures:

  • Evidence from chronicles in seasonally humid Benin and Uganda show annual cycles of replenishment from direct, diffuse recharge generated preferentially by heavy rainfalls. Kotchoni et al. show how chronicles from different geological environments in Benin can be modelled very effectively on a daily timestep with an improved watertable fluctuation model.
  • In semi-arid southwestern Niger, chronicles show that recharge to weathered crystalline rock aquifer systems occurs directly from rainfall but is restricted by a thick clayey aquitard developed from schist. However, greater recharge is shown to occur indirectly via riverbeds of ephemeral streams which provide preferential pathways through the saprolite.
  • Evidence from the Makutapora Wellfield of semi-arid central Tanzania that groundwater, abstracted at rates exceeding 30,000 m3/day, is sustained by episodic recharge associated with El Niño Southern Oscillation (ENSO). Further, abstracted groundwater is partially modern, derived from rainfall within the last 10–60 years.
  • Studies from Benin and Niger highlight the low storage of weathered crystalline rock aquifers and the importance of modern recharge in sustaining groundwater use. The low storage and low but highly variable hydraulic conductivity of weathered and fractured crystalline rock aquifers found over more than 40% of Sub-Saharan Africa may, however, have a potential advantage. Such aquifer systems restrict opportunities for intensive and competitive abstraction and are thus potentially self-regulating. Low-intensity groundwater abstraction distributed across the landscape also complements existing land-tenure systems in many areas of Sub-Saharan Africa dominated by smallholder agriculturalists.
  • The chronicles provide invaluable datasets to help direct assessments of past impacts of climate variability—e.g. ENSO, Atlantic Multi-decadal Oscillation (AMO)— and abstraction on groundwater storage. Such records, when continuously updated, can also provide key input to water resources management by tracking emerging risks to water security from groundwater storage decline or groundwater flooding (e.g. Murray et al. 2018).
  • Regional-scale (>50,000 km2) networks of long-term piezometric records can also be used to test the reliability of largescale, satellite observations from the Gravity Anomaly and Climate Experiment (GRACE). Indeed, the emergence of GRACE measurements of changes in total terrestrial water storage adds a potential tool, albeit at a much larger scale (>200,000 km2), to estimate changes in groundwater storage where records do not exist. However, there are substantial uncertainties from such estimates.

For full details read:

Please note that all five papers are open until 30 April, after which only 3 of the papers will be Open Access.

Text adapted from Topical Collection: Determining groundwater sustainability from long-term piezometry in Sub-Saharan Africa

3 new UPGro papers + Groundwater to be the UN-Water theme for 2022

We are delighted to report that UN-Water, the coordinating body for water issues across the United Nations, in a meeting this week agreed to make the theme of the 2022 World Water Development Report and World Water Day: “Groundwater: making the invisible visible” http://enb.iisd.org/water/un/30/html/enbplus82num34e.html

Meanwhile three new UPGro papers have recently been published:

“Groundwater hydrodynamics of an Eastern Africa coastal aquifer, including La Niña 2016–17 drought”

Núria Ferrera; Albert Folch; Mike Lane; Daniel Olago; JuliusOdida; Emilio Custodio  (Gro for GooD)

Key Points

  • An East African costal aquifer was characterized before and during La Niña 2016/17.
  • The recharge was reduced 69% compared to average annual rainfall.
  • Lower recharge during first and nil recharge during the second wet season
  • No important groundwater quality changes observed inland
  • Increase of seawater intrusion even during the wet season

This paper is accessible from here: https://www.sciencedirect.com/science/article/pii/S0048969719302177?dgcid=coauthor until 13 March

“A case for urban liveability from below: exploring the politics of water and land access for greater liveability in Kampala, Uganda”

Maryam Nastar, Jennifer Isoke, Robinah Kulabako & Giorgia Silvestri (T-GroUP) https://www.tandfonline.com/doi/full/10.1080/13549839.2019.1572728

Key Points

  • Despite efforts of local governments and NGOs to put public service delivery systems in place, there is a gap between goals and actual impacts on citizens’ quality of life
  • Decentralisation has faced challenges from the emergence of national partisan political struggles in local areas.
  • Pre-paid standpipes were installed with magnetic charge cards handed out for free. Initially a UGX25 card top-up bought 4 jerry cans (20l), overtime this reduced to 3 jerry cans. If a card was lost or stolen then a replacement cost users UGX15,000-25,000, which was unaffordable to many slum dwellers who then bought water from the standpipe caretakers for UGX 100-250/jerry can. Intermittent water supply from pre-paid meters is another factor making residents seek alternative water sources – generally unsafe springs, or from vendors and resellers at UGX 200-1,000 per jerry can.
  • Water is just one problem for residents – access roads, waste disposal, expensive school fees and high youth unemployment also mentioned in interviews.
  • Local elections have not happened as mandated because the government fears they will lead to social unrest. This has contribute to resident distrust of local government. 
  • Land ownership is a major barrier to water access and sustainability: there are no clear land records and there are many layers of complexity involving landlords, tenants, the city and traditional authorities.  Changing the land title from private to communal for WASH facilities is essential.
  • Political parties do sometimes co-opt community leaders and demobilise communities, but they can also create political spaces for debate on governance, rules and policies.
  • Strong social capital/networks and trust can help mobilise community power and resources, but can exclude some residents from decision-making processes.
  • NGOs, universities and social movements can play a crucial role in magnifying the ability of communities to act together and achieve liveability goals.

Transition Management for Improving the Sustainability of WASH Services in Informal Settlements in Sub-Saharan Africa—An Exploration. 

Silvestri, G.; Wittmayer, J.M.; Schipper, K.; Kulabako, R.; Oduro-Kwarteng, S.; Nyenje, P.; Komakech, H.; Van Raak, R. (T-GroUP) https://www.mdpi.com/2071-1050/10/11/4052

Key points:

  • “Transition Management” is a participatory planning technique developed for addressing sustainability issues in Europe. The UPGro T-GroUP project is one of the few examples of trying to apply the method in another context: Kampala (Uganda), Arusha (Tanzania), Dodowa (Ghana).
  • The authors identify five contextual factors that account for unsustainable WASH services:
    • Access to water and sanitation in informal settlements comprises a mosaic of formal and informal practices, water sources, sanitation facilities, behaviours and actors.
    • Fragmented and low governance capacity. Low levels of trust between actors.
    • Landownership: unequal and skewed. In Kampala, water and sanitation projects failed due to land conflict; landowners ‘donated’ land for the facilities but after some years later they would take back possession of the land and deny access to the facilities without paying.
    • Public participation in general and WASH services in particular:  more vulnerable community members are excluded
    • Unequal access to WASH services, for example water price varying on social status, with women being disproportionately disadvantaged. Low access to education plays a crucial role.
  • Transition Management was developed based on liberal representative democracies, but this experience in Sub-Saharan Africa suggests that here it needs to be about enlarging and strengthening democratic space  – as a method it is not neutral or universal but shaped by cultural norms and expectations.

‘Advances in Groundwater Governance’ – book now free to download

re-posted from GRIPP

This book is especially unique in that it not only explains a wide range of issues associated with groundwater governance, but it also provides water industry professionals, decision-makers and local stakeholders with a suite of solutions  for a heuristic approach to managing this extremely important resource.

Use this flyer for a promotional discount if you plan to purchase the book: Advances in Groundwater Governance 

Use this link if you want to access the free soft copy(pdf 15 MB).

Advances in Groundwater Governance was edited by Karen G. Villholth (IWMI), Elena López-Gunn (ICATALIST, Spain, and University of Leeds, UK), Kirstin Conti (International Groundwater Resources Assessment Centre (IGRAC) and University of Amsterdam, The Netherlands), Alberto Garrido (Universidad Politécnica de Madrid, and Water Observatory of the Botín Foundation, Spain), and Jac van der Gun (Van der Gun Hydro-Consulting, The Netherlands). The publication was sponsored by CGIAR Research Program on Water, Land and Ecosystems, Botín Foundation and IGRAC.

The publisher CRC Press – Taylor & Francis Group is acknowledged for providing free access of the book after one year of its first release.

For more information on the book, please, proceed to this page.

:: New UPGro paper :: Characteristics of high-intensity groundwater abstractions from weathered crystalline bedrock aquifers in East Africa

Maurice, L., Taylor, R.G., Tindimugaya, C. et al. Characteristics of high-intensity groundwater abstractions from weathered crystalline bedrock aquifers in East Africa Hydrogeol J (2018). https://doi.org/10.1007/s10040-018-1836-9

From the GroFutures Consortium project and Groundwater Recharge Catalyst project

Background

Crystalline Bedrock aquifers underlie about 40% of Sub-Saharan Africa and can generally sustain low-intensity abstraction. However, pumping rates and dependency is increasing in many areas, particularly for cities like Addis Ababa, Dakar, Nairobi and Dodoma. Projected growth in population and water demand for agriculture, plus the effects of climate change, mean that it is essential to develop a better understanding of the sustainable yields from these types of aquifers.   

Key Points:

  • The study focuses on five groundwater abstraction boreholes, 3 in Uganda, 2 in Tanzania.
  • Long term groundwater records are only available for one of the boreholes and it shows that recharge happens more when the rainfall is more intense, which is often associated with periodic El Niño Southern Oscillation (ENSO) events.
  • Chemical analysis of the water was used to determine the residence times of the groundwater (how long the water has been in the aquifer since it fell as rain). Overall, that most pumped water comes from modern recharge (within the last 10-60 years), so while abstractions are not mining pre-modern groundwater, there may be a component of older water that is coming out.
  • Groundwater abstraction appears to be supported by recharge from across multiple years, rather than just the most recent wet season.
  • The investigation of the five sites shows that long term, high intensity groundwater abstraction is possible from East African weathered crystalline basement aquifers, but the sustainability is constrained, in part, by the high inter-annual variability in recharge. Therefore operation of such pumping stations needs to include sustained monitoring of groundwater levels, pumping rates and rainfall as a minimum.

 

:: New UPGro Paper :: Understanding process, power, and meaning in adaptive governance

Two new social science papers from Hidden Crisis

Key Points from :

Understanding process, power, and meaning in adaptive governance: a critical institutional reading.

  • “Adaptive governance” has a number of core principles:
    • The need to live with change and uncertainty
    • To foster adaptive capacity (i.e. being able to anticipate and respond to change and uncertainty)
    • To understand human and natural systems as interconnected
    • To consider resilience as the central desirable attribute, e
  • One of two case studies focuses on a non-UPGro project, called SWAUM (2011-2016), in the Great Ruaha River catchment in Tanzania (which, by coincidence is one of the GroFutures observatories)
    • Concerns about the catchment arose in the 1990s and a number of donor-funded projects tried to improve the natural/water resource management of the catchment.
    • An evaluation of the SWAUM project had strengthened coordination both vertically and horizontally through hierarchies at different political levels.
    • Limited improvements in land management had taken place but despite the greater awareness, debate and agreement, local people continued to cultivate river banks and river beds to the detriment of the river flows – and despite a deliberate attempt to include marginalised people, they did not get significant representation from pastoralists. This may be in part due to a dominant narrative from other, more powerful, stakeholders that they are to blame for resource depletion.
  • Cleaver and Whaley conclude that the following three elements are inextricably bound together:
    • Process: institutions that are designed for adaptive governance (such as knowledge sharing platforms, resource management arrangements) may only work and endure where they serve other socially valued processes and are embedded in accepted forms of behaviour and practices.
    • Power: allocation or resources or dominance of particular narratives about cause-and-effect is driven by visible, hidden and invisible uses of power by individuals, social groups and organisations. This is often why designed interventions for adaptive governance often deliver less than expected.
    • Meaning: There different worldviews on cause and effect in the human and natural worlds and involve multiple processes that will likely affect adaptive governance arrangements.

 

:: New UPGro paper :: Insights from a Multi-method recharge comparison study (Ethiopia)

A new paper from AMGRAF UPGro Catalyst (which has continued with support from the REACH programme).

Walker, D. , Parkin, G. , Schmitter, P. , Gowing, J. , Tilahun, S. A., Haile, A. T. and Yimam, A. Y. (2018), Insights From a Multi‐Method Recharge Estimation Comparison Study. Groundwater. https://onlinelibrary.wiley.com/doi/10.1111/gwat.12801

Key Points:

  • A recharge assessment was conducted at a study site in Northwest Ethiopia (Dangila woreda)
  • 9 groundwater recharge estimate techniques were used with a total of 17 variations were applied to a shallow aquifer
  • These gave a wide range of values from 45mm/year to 814 mm/year
  • The most reliable estimates for reliable recharge are in the range of 280 – 430 mm/year, however the outliers to provide some useful information that helps understand the aquifer

 

:: New UPGro paper :: Rainfall and groundwater use in rural Kenya

Thomson, P.; Bradley D,;Katilu;Katuva J.;Lanzonia, M.; Koehler J.; Hope, R. Rainfall and groundwater use in rural Kenya, Science of The Total Environment, Volume 649, 1 February 2019, Pages 722-730

Key Points

  • As part of the Gro for GooD study in Kwale County, Kenya, UPGro researchers noticed then when comparing data collected from 266 Smart Handpumps and 19 raingauges that:
    • there was a 68% reduction in pump use on the day immediately following heavy rain, as well as
    • a 34% reduction in groundwater use during the wet season compared to the dry season, suggesting a large shift from improved to unimproved sources in the wet season.
  • This data was compared to household survey data collected by the researchers, and the relationship between rainfall and pumping was modelled and tested.
  • In this area rainwater harvesting was widespread and only 6% of households reported handpumps as their sole source of drinking water in the wet season, compared to 86% in the dry season.
  • Whilst rainwater harvesting can be a safe source of water it requires the collection and storage to be well designed and built.
  • This work provides empirical evidence that the existence of improved water supplies does not guarantee their use and health benefits may not be as expected.

:: New UPGro paper :: Participatory scenario analysis for urban water and sanitation: Kisumu, Kenya case study

“A participatory methodology for future scenario analysis of sub-national water and sanitation access: case study of Kisumu, Kenya” by Heather Price, Lorna. G. Okotto, Joseph Okotto-Okotto, Steve Pedley & Jim Wright: https://doi.org/10.1080/02508060.2018.1500343 from the UPGro Catalyst Project “Sustaining groundwater safety in peri-urban areas

Context:

  • Many cities in Sub-Saharan Africa, and other low and middle income countries, are growing fast. Expansion of water supply systems to meet that growing demand is challenging, particularly in the context of climate change and competing water uses, such as agriculture.
  • Scenario planning, with geographical information systems, is an essential tool to help government bodies and utilities plan investments in urban and peri-urban water supply infrastructure and services, but examples in developing countries remain rare and have generally been rural.
  • The case study, Kisumu, is a city in Western Kenya near the shores of Lake Victoria. The Kisumu Water and Sewerage Company (KIWASCO) has responsibility across the city.

Key Points:

  • 12 key informants with particular insights into the water and sanitation sector, social and economic planning and human population dynamics were identified and included in two sessions: (1) Background information and future trajectories of population growth; (2) computer software called “International Futures” was used to explore different population scenarios, which formed the basis of discussions on water and sanitation planning for the city in three groups.
  • Through the participatory planning in separate groups it was possible to draw out where areas of consensus and uncertainty about how the city, and its demand for water and sanitation will change. One area of common agreement was that groundwater and on-site sanitation will remain an important part of the mix until at least 2030, which implies and longer-term need for interventions like household filters, chlorine dispensers at well heads, education or land tenure reforms to enable sewerage installation.
  • Future research should focus on a broader range of scenarios than just extending current trends in population change, for example: ethnic conflict, social fragmentation, and rapid, Chinese-led infrastructure development.

 

Related UPGro work on urban groundwater or groundwater for urban areas:

 

Picture: Figure 5. Map of household water access by 2030 for sub-locations in and neighbouring Kisumu, Kenya, assuming continuity of current trends and policies, as envisaged by break-out groups 1, 2 and 3.

:: New UPGro Paper :: Tryptophan-like fluorescence as a measure of microbial contamination

A new paper has been published from the UPGro Gro for GooD project, working in Kenya, which develops the work done under the UPGro Catalyst Project on mapping groundwater quality, which developed an exciting new low-cost, real-time method of measuring microbial contamination of groundwater.

Context:

  • Globally, 25% of people lack access to water that is free from microbial contamination, in some countries the proportion is much higher.  This has major health implications, particularly for children.
  • Monitoring water quality for disease-causing organisms is difficult, and the common method is take water samples to a lab to measure Coli bacteria. Although largely successful, it is an expensive in terms of time and materials, and cannot be relied on for some kinds of biological water quality risks – particularly in groundwater where the absence of E.Coli does not guarantee biological safety of the water.
  • Tryptophan-like fluorescence (TLF) is a relatively new way of rapidly measuring biological water quality in the field, without needing expensive and time-consuming lab equipment and consumables. It is better suited to groundwater than surface water monitoring.

Key Points: –

  • This is the first groundwater study to compare TLF with E. Coli specifically.
  • Tryptophan-like fluorescence (TLF) can complement E. coli as a risk indicator, but it is not proposed as a replacement.
  • Both TLF and coli distinguish low/intermediate, high and very high risk sources.
  • TLF has negligible variability due to the method, unlike bacteriological analyses.
  • TLF is useful for pre-screening, monitoring and demonstrating risk in groundwater.
  • Fieldwork for this research was done in rural Kwale Country, Kenya
  • Next steps include:
    • focus on how TLF relates to pathogens and health, rather than just focusing on the coincidence with E.Coli.
    • better understanding of TLF in different groundwater conditions
    • better computer software of processing and presenting TLF data
    • assess the usefulness of TLF in communicating water risks to groundwater users.

Read the full paper (open access) here:

Nowickia, S.,  D. J.Lapworth, J.S.T. Ward, P. Thomson & K. Charles (2019) Tryptophan-like fluorescence as a measure of microbial contamination risk in groundwater, Science of The Total Environment, Volume 646, 1 January 2019, Pages 782-791 https://doi.org/10.1016/j.scitotenv.2018.07.274

If you are interested in finding out more on safe water and water quality monitoring then you watch these RWSN webinar recordings from late last year:

  • Safe water in towns and peri-urban areas: challenges of self-supply and water quality monitoring: https://vimeo.com/266654585
  • La salubrité de l’eau dans les villes et zones péri-urbaines: le défis liés à l’auto-approvisionnement et le suivi de la qualité https://vimeo.com/266649345