Hand-pumps for deeper groundwater key to climate resilience for rural communities

by Isaiah Esipisu for the PAMACC News Agency

Photo:  A hydrogeologist measuring the water table in Addis Ababa, Ethiopia (I. Esipisu)

NAIROBI, Kenya (PAMACC News) –  new study has revealed that use of hand-pumped boreholes to access deeper groundwater is the most resilient way of adapting to droughts caused by climate change for rural communities in Ethiopia and other parts of Africa.

This comes amid concerns by scientists that the resource, which is hidden underground, is not well understood on the continent especially in the Sub Saharan Africa region.

According to a new study that compared performances of rural water supply techniques during drought periods in Ethiopia, scientists from the British Geological Survey (BGS) in collaboration with their colleagues from Addis Ababa University found that boreholes accessing deep (30 meters or more) groundwater were resilient to droughts.

The study, which was published in the Nature scientific Journal on March 4, further found that boreholes fitted with hand-pumps, had highest overall functionality during the monitoring period compared to motorised pumps in.

“While motorised boreholes generally also access even deeper groundwater, repairs [in rural settings] are more difficult and may take longer, resulting in lower levels of functionality as compared to hand-pumps,” explained Dr Donald John MacAllister, the lead author and a hydrogeologist from the British Geological Survey.

At the same time, the scientists observed that springs, open sources and protected wells experienced large declines in functionality, undermining, in particular, the water security of many lowland households who rely on these source types.

“By comparison, motorised, and crucially hand-pumped, boreholes which access deeper groundwater performed best during the drought,” said Seifu Kebede, a former Associate Professor of Hydrogeology for Addis Ababa University in Ethiopia, and one of the researchers. Prof Kabede has since moved to the University of KwaZulu Natal in South Africa.

In collaboration with the United Nations Children’s Fund (UNICEF), Addis Ababa University and the Overseas Development Institute (ODI), experts at the BGS examined the performance of a wide range of water source types, using a unique dataset of more than 5000 individual water points collected by UNICEF in rural Ethiopia during the 2015-16 drought.

In August last year, another study headed by scientists from the University College London (UCL) refuted earlier beliefs that groundwater was susceptible to climate change, and instead confirmed that extreme climate events characterised by floods were extremely significant in recharging groundwater aquifers in drylands across sub-Saharan Africa, making them important for climate change adaptation.

“Our study reveals, for the first time, how climate plays a dominant role in controlling the process by which groundwater is restocked,” said Richard Taylor, a Professor of Hydrogeology at the UCL.

However, experts believe that for African continent to take advantage of the groundwater resources, there is need to invest in research, in order to understand the nature of aquifers underground, how they are recharged, their sizes, their geography, how they behave in different climatic conditions, the quality of water therein, and how they can be protected.

According to Prof Daniel Olago, a Senior Lecturer at the Department of Geology, University of Nairobi, in Africa, groundwater in Africa remains a hidden resource that has not been studied exhaustively.
“When people want to access groundwater, they ask experts to go out there and do a hydro-geophysical survey basically to site a borehole without necessarily understanding the characteristics of that particular aquifer,” he said.

African Ministers Council on Water (AMCOW) estimates the volume of groundwater in Africa to be 0.66 million km3, which is more than 100 times the annual renewable freshwater resources. “But since it is hidden underground, it remains under-valued and underutilised,” said Dr Paul Orengoh, the Director of Programs at the council’s secretariat.

In October last year during a meeting in Nairobi, AMCOW launched an initiative that will help member states understand their groundwater resources, manage it sustainable, and use it for poverty alleviation in their respective countries.

According to Dr Orengoh, the AMCOW Pan-African Groundwater Programme (APAGroP) seeks to improve the policy and practice of groundwater in Africa for better lives and livelihoods in all the 55 member countries.

The BGS has already developed the ‘Africa Groundwater Atlas,’ which is a literature archive that avails all information about groundwater in Africa, published and unpublished (grey) on an online platform.

“Our aim is to provide a systematic summary of groundwater resources for each African country, compiled in collaboration with country hydrogeologists,” said Dr Kirsty Upton, a Hydrologist at the BGS.

So far, millions of households in Africa rely on groundwater for domestic and partly for agriculture production. However, scientists still believe that the resource is largely underutilised.

Studies have indicated that at least 320 million people in Africa lack access to safe water supplies. The problem is further exacerbated by frequent droughts caused by climate change.

“If well understood, groundwater has the potential of bridging the water scarcity gap, thus, reducing poverty on the African continent,” Prof Olago told PAMACC News.

The study in Ethiopia recommends investment in motorised boreholes and most importantly, investment in hand-pumps.

“In the face of climate change, the resilience of rural water supplies in East Africa is best achieved by prioritising access to groundwater via multiple improved sources and a portfolio of technologies, supported by on-going monitoring and responsive and proactive operation and maintenance,” said Dr MacAllister.

“What remains a major concern is lack of access to appropriate skills and expertise, spare parts and, for motorised systems the fuel, that is required to keep rural water supplies functioning, factors that are particularly challenging to ensure when demand on water sources increases during drought.”

 

Meet Joseph Okullo, a groundwater research scientist in the making

Interview and photos by Isaiah Esipisu

With a Masters degree in geology from Makerere University, Joseph Okullo landed a consultancy job, to assist UPGro team in Uganda as a physical scientist. Since then, his star has been glowing brighter and brighter.

During the Africa Water Association (AfWA) Congress in Kampala, the 36 year old upcoming scientist shared his experience based on his involvement with UPGro, and what it means to his future career.

Here are his excerpts:

IE: What role did you play in the UPGro study in Uganda?

JO: I worked as a physical science research assistant within the Hidden Crisis project, through which I was involved in a number of activities.

The first survey involved scrutinizing 200 boreholes in different parts of the country. We did random selections of these boreholes in districts.

The main aim was to check the functionality of these water points and also the water quantity. Through this, we discovered that there were a number of boreholes that could not meet the set standard of the yield, which is 10 litres per minute with full stroke.

As a result, there is a clear understanding as to why many boreholes were failing soon after construction. By understanding the problem, it becomes much easier to search for the solution.

IE: What impact did this research have on your career

JO: Before I met UPGro, I was jobless. And because UPGro worked hand in hand with Makerere University, I begun to interact with scientists from the university from time to time and during this period, they saw my potential. That’s how I secured a part time job as an assistant lecture at the University.

Today, am in the process of PhD admission at the same university.

IE: What do you intend to research on if you manage to secure the admission?

JO: My research topic is about how climate change affects groundwater storage and recharge in the Northern part of Uganda.

Northern Uganda is an area that has not been studied well in terms of groundwater, given that it is a semi arid area. UPGro had researches in those areas and I am happy to build on the already existing knowledge developed through UPGro.

IE: How did it feel working with rural communities in different parts of the country?

JO:  It is interesting to work with different communities. But the first thing is to try and make yourself part of these communities because they have different cultures, different norms and different way of thinking. As a researcher you need to strike a balance with any given community.

However, it is so gratifying when you help them find solutions to problems that have bedeviled them for so many years.

IE: From the experience with communities under the UPGro research, what do you think is the perfect way of managing community water points?

JO: There have been several models. But most of them end up collapsing because of one reason or another. However, we have communities in places like Masindi District which are managing their boreholes in a very sustainable manner.

These communities operate like micro-finance institutions, where they collect money from members, and they can still lend the same whenever a member needs cash. Since they have an active account, it becomes so easy for them to fix their boreholes in case there is a problem.

IE: What did you learn during this research process?

JO: I have learned many things. For example, before this project, I knew that if a borehole is yielding water, then it is functional. But with the UPGro approach, functionality is far beyond water coming from a borehole. You look at the quantity of the water, the leakage, if there some underlying issues to indicate that it was almost breaking among other things.

IE: What do you think should be done to improve access to safe water for people in rural Uganda?

JO: From the UPGro experience, I discovered that there are so many boreholes that have been sunk, but they are not well taken care of. This is mostly because communities think it is not their responsibility to manage those boreholes.

Some of them were sunk by politicians during campaigns, and by the end of the campaigns, they are abandoned. Some of them are just functional save for very small hitches. Yet communities do not take responsibility because they feel that it was a politician’s project, or an NGO project

To solve this problem, there is need to strengthen the ownership, and strengthen water user committees.

Another problem is about spare parts. It is not easy to get a genuine spare part in the Ugandan market. If there was a groundwater policy, then the regulators will understand the importance of groundwater and regulate the importation of these spare parts. Before this happens, communities will be forced to live with what is available in the market.

Lastly, we have difficult hydrogeological environments. In some areas, it is not easy to site groundwater aquifers. This therefore calls for more detailed surveys to guide and inform on the water provision within those particular communities.

Groundwater Science meets Policy at AfWA Congress

Day 2 of the AfWA Congress in Kampala, and the UPGro-convened stream of groundwater sessions got underway. First up was  session focusing on the AMCOW Pan-African Groundwater Program (APAGroP), with an opening by AMCOW Executive Secretary, Dr Canisius Kanangire, followed by a panel, featuring Tim Sumner from DFID

This was followed by two further sessions with lively presentations and Q&A on UPGro research from GroFutures and T-GroUP. Tomorrow, further sessions will include presentations from UPGro researchers and other close groundwater partners, including BGR.  These few days have been a culmination of many years work to bring UPGro researchers close to others working on African groundwater and to policy makers at the continental and national levels.

Afterwards, Isaiah Esipisu caught up with Dr Paul Orengoh who explained the aims and progress of APAGRoP:

(Photos; Isaiah Esipisu/Kirsty Upton)

Hidden Crisis project presentation in the China Africa water Forum Series No. 7, at Windhoek, Namibia

By Dessie Nedaw
8 August 2019

The China Africa Water Forum is a platform for all professionals within the fields of water science and technology in Africa and China. The China Africa Water Association also referred to as CAWA, is a non-profit organization that predominantly organizes annual events. One such event was held for three days from July 22 to July 24, 2019 in Windhoek, Namibia with title “Risk Reduction through Sustainable Water Management in Developing Countries”.

The conference was the seventh of the series held under the title China Africa Water forum. The conference has been prepared in collaboration between China Africa Water Association and Namibia’s chapter of Association of Hydro-geologists and other stakeholders. 

The opening speech by Minister of public enterprise has emphasized the current fresh water supply challenge of Namibia facing and the possible solution of desalinization as the future option. The Chinese Ambassador in Namibia has emphasized on the neeed of China Africa partnership in a win-win strategy based on mutual benefits. He mentioned the similarities of challenges faced by both China and Africa and stressed some of the innovative approaches and technologies in China stressing the importance of the forum for transfer of skill and knowledge.  Nearly 25 presentation from Africa and China covering a wide range of water related topics focusing in reducing risk of water supply, management and sustainable utilization water resources, transport and diffusion of water pollutants and exploration and development of groundwater has been addressed during the three days conference.

The Hidden Crisis project work was presented at the conference within the groundwater exploration and development theme – highlighting the work of the project to apply a tiered approach to assess functionality of handpumped borehole supplies in terms of different levels of performance. The findings have shown this approach to be helpful to unpack national statistics and develop more nuanced understanding of functionality within the country. 

The experience has given opportunity to highlight the project and also given good opportunity to share ideas from other professionals, particularly Chinese water experts. Ethiopia has formally requested to be the next organizer of China Africa water forum in the meeting.

Figure: Dessie Nedaw

Technical brief now available – Project approach for defining and assessing rural water supply functionality and levels of performance

The Hidden Crisis project team have now published a Technical Brief on the methods developed and used by the project to assess rural water supply functionality and levels of performance – now available from here.

This technical brief is aimed at sharing the learning and approaches developed by the project to look at how the functionality and performance levels of boreholes equipped with handpumps (HPBs), can be assessed using a common set of definitions and methods. A tiered approach to defining and measuring functionality was found to be useful to examining functionality for different scales and purposes of monitoring. 

The report is aimed at national and regional actors involved in the provision and monitoring of rural water supply functionality.

The brief sets out the tiered functionality definitions, and accompanying survey methods, which were developed by the project and have been applied in functionality surveys across Ethiopia, Uganda and Malawi .

Photos: BGS © UKRI. Survey 1 Field teams, Uganda and Malawi

Rural water supply: a political economy analysis

The Hidden Crisis project team examined the political economy of rural water supply (RWS) in Ethiopia, Uganda and Malawi during 2017 and 2018. These are based on literature and interviews with government staff and water sector stakeholders to unpick systemic obstacles to sustainable access to water.  

The three reports summarising the key findings are now published – and available from here.

The findings provide an insight to some of the key structural factors which affect RWS performance (historical, institutional, actors) in the three countries – examining systematic factors, decision making logic and opportunities for reform.

Photo: BGS © UKRI. Hand-pumped borehole water supply, rural Malawi.

Study shows boreholes are key to drought resilience in Ethiopia

BGS Press Release

Installing more boreholes to tap underground water will improve rural Ethiopian
communities’ resilience to drought, according to a new report.

Research carried out by the British Geological Survey (BGS), the University of Addis Ababa and the Overseas Development Institute (ODI) showed that people who have access to groundwater from boreholes are much less affected by drought than those who rely on wells or springs for their water supply. The report also links the shortage of water to:

  • conflict in local areas
  • migration
  • a decline in breastfeeding rates
  • a rise in miscarriage rates
  • more children missing school

Groundwater experts from the BGS monitored 19 hand-dug wells, springs and boreholes in two districts in northern Ethiopia over 18 months. They also held focus-group discussions with local people, including school and health centre staff, near each of the groundwater sources.

The team found that boreholes drilled to 50–100 m were the most reliable source of water during the extended drought of 2015–16 and through the dry season.

Prof Alan MacDonald, the BGS hydrogeologist who led the research, said: ‘We found that
boreholes equipped with hand pumps were more reliable than springs or hand-dug wells, and this reliability was not affected by drought or seasonal change. As hand-dug wells dried up and springs failed, the boreholes we monitored gave exactly the same flow throughout the year.

‘Boreholes also had better water quality. As the drought ended and rain started falling many of the springs and hand-dug wells became grossly contaminated. The boreholes performed much better, with less than half of them showing any level of contamination.

‘Our findings make a clear case for the installation of more boreholes to improve resilience to drought. If constructed carefully and regularly maintained, boreholes can transform the water security for rural villages and make them much more resilient to the effects of climate change.’

Dr Seifu Kebede, from Addis Ababa University’s earth sciences department, said:

‘A significant finding of our study is the length of time people without boreholes spent in water collection during the dry season and drought, and the very low volumes of water they were able to collect.

‘People were routinely queuing for up to 10 hours, which led to tension and sometimes violence, and had wide-ranging impact across communities. Women breastfed less and experienced more miscarriages, meals were missed and farm work was reduced to help collect water. School attendance was down in all but one district, as children were involved in water collection. All health centres in the study area reported increases in diseases, and, in some cases, employees were paying for water collection to keep the centres functioning.

‘We must look at how communities source water during a normal dry season to predict how they will cope during drought years. This study shows that boreholes, where they can be installed, could be the most reliable source of groundwater in these areas of northern Ethiopia.’

According to the BGS’s African Groundwater Atlas, Ethiopia has a high potential for groundwater in the highland regions due to the mostly permeable rocks. A major challenge, however, is the rugged terrain, which can hinder the movement of drilling rigs.

The project was funded by the Natural Environment Research Council (NERC) and the Department for International Development (DfID).

The full paper is available in Environmental Research Letters.

For further details please contact:
Sarah McDaid (sarah@mcdaidpr.co.uk/07866789688)
Twitter: @BritGeoSurvey


Editors note:

This week, groundwater experts from around the world will be attending a meeting of GRIPP at the SIWI World Water Week to discuss how to governments and aid agencies can take evidence like this into account when designing and implementing their policies and projects, and specifically around an exciting new groundwater initiative with the African Minister’s Council on Water (AMCOW)

The Politics of Water 3: Area Mechanics in Malawi

by Naomi Oates, re-posted from University of Sheffield

Competing narratives surround the role of ‘area mechanics’ in Malawi

In November 2017 I started my ‘politics of water’ blog as an outlet to share experiences and findings from my research in rural Malawi on water governance and service sustainability.

The first instalment describes my initial impressions of Balaka District while the second explores the relationship between extension workers and rural communities.

This might have left you wondering – what about everyone else?


Area Mechanics receive hands-on training in water point repairs (Author’s own)

Water services in Malawi are decentralised, at least in theory.  This means two things. Firstly, district councils, together with district water offices, are mandated to develop and monitor water infrastructure in rural areas.

Secondly, communities are expected to maintain and repair their water points with minimal external assistance. For more serious problems, local ‘area mechanics’ are their first port of call, followed by the district water office.

In reality, district water offices are severely under resourced, there are currently few area mechanics, and the effectiveness of community-based management varies considerably. However, where they are present, area mechanics are thought to play an important role in keeping water points functioning.

Area Mechanics: volunteers or entrepreneurs?

So what is an area mechanic? This sounds like a simple question, but the answers are complex and contradictory.

The area mechanics Thoko interviewed in Balaka for her MSc research tended to consider themselves, foremost, as volunteers working for the greater good of the community. After all, they were selected from the local community and have strong social ties with the people they serve. An area mechanic may be a relative, a neighbour or a fellow churchgoer, even the village headman himself. Trustworthiness was emphasised by communities as an important criteria.


This training manual describes area mechanics as ‘artisans in advanced hand pump repair operating on a payment basis’ (GoM 2015)

The depiction of area mechanics as volunteers has been echoed in my own conversations with extension staff and NGO workers, but in combination with another term – entrepreneur. According to national policy, area mechanics are meant to operate as independent businesspersons. They are given training and a few basic tools, after which they are expected to make a small profit to sustain their operations. They are also encouraged to sign written contracts with communities to clarify payment for services.

This model is clearly aimed at economic viability and is meant to incentivise area mechanics by providing them with an income. Arguably, the model has failed to gain traction locally because it ignores the social context in which area mechanics operate.

A third view is that area mechanics are integral to formal water governance arrangements – in other words part of, or plugging a gap in, the government’s extension system. This may not be stated explicitly, but is implicit in the use of government issued ID cards.

To give another example, area mechanics are sometimes (but not always) introduced to communities by a government representative in order to establish their legitimacy. Several of the area mechanics Thoko spoke to wanted their role to be formalised to enable them to negotiate fees with communities, or conversely in the hope of receiving material and financial support from government.

The ambiguity of water mechanics

Despite appearances, none of these narratives is mutually exclusive, and they may be employed at different times depending on the context. As one extension worker explained to me:

“Area mechanics are entrepreneurs by design and should make communities aware of that. They are supposed to have a signed agreement. The area mechanic needs to be paid, a little.”


Area mechanics often prefer working as a team – two heads being better than one! (Author’s own)

He then went on to clarify:

“It is not payment as such but a token of appreciation. It is up to them if they want to work for free. However they shouldn’t deny assistance to a Water Point Committee just because they don’t have money.”

The ambiguity surrounding area mechanics can be confusing and could be viewed as a failure of policy (or its implementation). But, in my view, that conclusion would be overly simplistic and misses the point.

The co-existence of these different narratives, or interpretations of policy, leaves room for negotiation and pragmatism. These are arguably important ingredients for success, especially when adapting policies to local realities. In short, the role of area mechanics in Malawi’s water governance system is not yet set in stone.

In addition to my PhD fieldwork this blog draws on previous work by the authors under the UPGro Hidden Crisis project. Check out our report on the political economy of rural water supplies in Malawi.

“They Gave Us Breakfast and a Good Meal”: Roles, Perceptions and Motivations of Water Point Area Mechanics in the Maintenance of Borehole Hand Pumps in Balaka District, Malawi

by Thokozani Mtewa, Evans Mwathunga, Wapumuluka, Mulwafu

Abstract

“In the rural areas of Malawi, water is accessed mostly through boreholes. The borehole and hand pump functionality concept is currently getting a central place in development agenda for the provision of affordable and safe water supply under the Sustainable Development Goals.

A study on area mechanics and borehole functionality was conducted in Balaka district in Malawi in 2017. The study used qualitative research methods of data collection using
political economy analysis to understand the role of Area Mechanics (AMs), their relationships with water point committees and other stakeholders, their perceptions,
motivations and challenges. Questionnaires and an audio recorder were employed to
collect data from individual interviews and focus groups.

The study findings revealed that even though the system of AMs is well defined in
policy, in practice things are done differently. The AMs defined their jobs differently; from entrepreneurs (10%) to community volunteers (90%) and the sizes of catchment areas of AMs are mostly divided informally and unequally which affects service delivery.
The study also found AMs are motivated by both monetary and non-monetary benefits
from the communities under their jurisdictions.

Consequently, overall the level of incentives and disincentives seem to have affected
their maintenance service provision as well as their relationships with other water point
stakeholders. For proper functioning of an AM system as part of groundwater infrastructure, this paper therefore proposes the need to revise the policy and procedures in training, selection and allocation of AMs as well regular short term trainings to area mechanics at district level.”

Source: Conference Abstract

An Analysis of Hand Pump Boreholes Functionality in Malawi

by  Prof T. Mkandawire, E. Mwathunga, A.M. MacDonald, H.C. Bonsor, S. Banda, P.,Mleta, S. Jumbo, J. Ward, D. Lapworth, L. Whaley, R.M. Lark

Abstract

A survey on functionality of boreholes equipped with hand pumps was undertaken in five districts in Malawi in 2016. The survey aimed at developing a robust evidence base and understanding of the complex and multifaceted causes of high failure rates of groundwater supplies in Africa in the wake of climate change. This would guide sustainable future investments in water and sanitation projects.A stratified two-stage sampling strategy was adopted.

The results from the survey indicate that 74% of hand pump boreholes (HPBs) are functional at any one point; 66% of HPBs passed the design yield of 10 liters per minute; 55% passed the design yield and also experienced less than one month downtime within a year; and 43% of HPBs which passed the design yield and reliability, also passed the World Health Organisation (WHO) standards of water quality.

The survey also assessed the village level Water Management Arrangements at
each water point. Results indicate that the majority of the Water Management Arrangements (86%) are functional or highly functional.

The initial exploration of the data shows no simple relationship between the physical functionality and Water Management Arrangements.

Source: Conference Abstract

Photo: SADC-GMI (via Twitter)