GRIPP: Invisible treasures – Groundwater for Africa

This piece is from an original coverage  in April 2017, in German in the magazine Africa Wirtschaft (Africa Economy) 

Reliable access to water is still a problem in Africa. The Groundwater Solutions Initiative for Policy and Practice (GRIPP), a group of 30 international partners, is committed to providing greater security of supply and sustainable management. The focus: groundwater. 

Africa’s economy is growing. Technical developments, a broader middle class and a lively start-up scene are used in the media and in countless panel discussions to document the popular “Africa Rising” narrative. What many people forget, however, are the smallholder farmers who are, in fact, the driving force of the continent. No economic activity in Africa is more important than agriculture and none is so fragile.

The main reason is water – especially when it is missing. Already, 17 countries, many of them in the east and south of the continent, are struggling with drought for the second year in a row, writes the international media organization IRIN. If there is no regular and sufficient rainfall, the farmers can neither feed their cattle nor farm the fields. Harvest failures and famines are often the result. According to IRIN, more than 38 million people are directly affected. “In a drought, all we see is dried-up riverbeds and withered fields everywhere. Often, however, the solution is so close,” says Jeremy Bird, former Director General, International Water Management Institute (IWMI), an international research institution that addresses food security, poverty and the effects of climate change through better water management. One aspect that is becoming more and more important: groundwater.

Lack of Resources to Access Groundwater

More than 30% of the world’s freshwater reserves are stored below the Earth’s surface. The demand for the valuable resource keeps growing continuously. A study by the University College London and the British Geological Survey (BGS) determined that up to 660,000 km³ of groundwater is located under African soil – more than 100 times the renewable surface water resources of the continent. Using this hidden treasure responsibly and sustainably is particularly important for the world’s dry zones. One of the biggest hindrances to raise awareness about the enormous importance of groundwater is that it is invisible. “Rivers or reservoirs are visible when they dry out or become polluted. If the same happens to groundwater, hardly anybody takes notice,” explains Bird.

Dr. Karen Villholth, Principal Researcher, IWMI, says “Water scarcity has to be considered in a relative context in Africa. On the one hand, water resources are lacking in many places, but, often, it is actually the financial resources which are lacking to access existing groundwater resources.” The expert from IWMI, Pretoria, South Africa, attended the 8th Water Research Horizon Conference in Hamburg in mid-September, a conference with leading water scientists from around the world. There, she spoke not only as a groundwater specialist, but also as the international GRIPP Coordinator.

GRIPP, short for Groundwater Solutions Initiative for Policy and Practice, is a consortium of 30 international research institutions, companies and nongovernmental organizations (NGOs), founded in 2016. It is working across the world to improve groundwater management, particularly in rural and agricultural areas in developing and emerging countries. In sub-Saharan Africa alone, there are plans for the implementation of various research-for-development projects for groundwater-based irrigation systems. The overall investment catalyzed partly through GRIPP is aimed to exceed USD 1 billion until 2030. The goal is to irrigate an additional area of 600,000 hectares. In addition to technical solutions, the focus also lies on issues of ‘good governance’, ensuring long-term water management on a local, national and international level, which is better adapted to the needs of the population.

IWMI is leading GRIPP, with several United Nations organizations and partners from Africa and Germany participating, including the Africa Groundwater Network; the Association of Water Well Drilling Rig Owners and Practitioners (AWDROP), Nigeria; the Center for Advanced Water Research (CAWR) with experts in Dresden and Leipzig, Germany; and the Federal Institute for Geosciences and Natural Resources (BGR), Germany.

Importance for the Economy

Dr. Ralf Klingbeil, Senior Expert, Department of Groundwater and Soils, BGR, is the contact person for GRIPP. “As a scientific institute, we naturally have very close ties to relevant research organizations and can, in addition to our technical expertise, also provide numerous contacts to institutions, authorities and companies in the partner countries,” explains Klingbeil. In the past, BGR has been active in groundwater projects in Botswana, Cameroon, Namibia and Zambia. Currently, projects are under way in Burundi, the Maghreb countries and also with the river and lake basin organizations of the Niger River and Lake Chad.

Klingbeil emphasizes the great importance of the subject for the private sector. After all, any company that invests in Africa would want to secure basic location factors such as reliable energy and water supplies. “For German companies, there are various opportunities to get involved,” says Klingbeil. Companies could support local multiple use (for agriculture and drinking) water supplies, or contribute to the financing of infrastructure for groundwater monitoring or artificial recharge. If the operations are in the vicinity of their facilities, the companies stand a better chance of being successful.

Currently, one of the main problems is the lack of functionality and maintenance of already installed well systems, reports Seifu Kebede, Professor of Earth Sciences, Addis Ababa University, Ethiopia. “In rural areas, on average, not even half of the systems are working properly when they are needed. If you additionally consider the water quality, the quota falls below 30%,” says Kebede. An approach for long-term solutions can only be developed with an interdisciplinary approach with a mix of innovative technological developments, trained specialists, and willingness to cooperate for lasting and long-term commitment at governmental level, as well as a stronger awareness in society. The very same approach that GRIPP pursues. “I’m looking forward to the results of this important initiative,” says Kebede.

Read original Afrika Wirtschaft magazine 4/2017 coverage in German here

  • Seifu Kebede, Professor of Earth Sciences, Addis Ababa University, Ethiopia
  • Jeremy Bird, former Director General, International Water Management Institute (IWMI), Sri Lanka
  • Karen Villholth, Principal Researcher, Research Group Leader and international GRIPP Coordinator, International Water Management Institute (IWMI), South Africa
  • Ralf Klingbeil, Senior Expert, Department of Groundwater and Soils, Federal Institute for Geosciences and Natural Resources (BGR), Germany

Florian Sturm works as a freelance journalist for JournAfrica! – a multilingual media agency that is committed to a modern African image: journafrica.de

Related links:
gripp.iwmi.org
bgr.bund.de

Ethiopian farmers and households have their say on their groundwater needs

re-posted from: Grofutures.org

The GroFutures team in Ethiopia has recently completed a survey of 400 households from predominantly agricultural communities within the Becho and Koka Plains of the Upper Awash Basin of Ethiopia; there are the same communities where the GroFutures team recently constructed and deployed new groundwater monitoring infrastructure. The team of social scientists, led by Yohannes Aberra of Addis Ababa University with support from Motuma Tolosa and Birhanu Maru, both from the Oromia Irrigation Development Authority, applied a questionnaire to poll respondent views on small-scale, household-level use of groundwater for irrigation, the status of groundwater governance, and their experiences of different irrigation, pump, conveyance and application technologies. The same questionnaire will be applied in other GroFutures basin observatories later this year.

The team began the household-level surveys on May 27th (2017) and completed 400 of these within 15 days. Two weeks prior to the start of the survey, the team reviewed the GroFutures-wide questionnaire to familiarize themselves with the questions and logistics of implementation. During implementation, the team encountered a major challenges in that many household heads were unavailable at their houses and had to be traced with all movements occurring in particularly hot weather.

In Becho, the team conducted questionnaires in the village of Alango Tulu whereas in Koka the team surveyed the village of Dungugi-Bekele.  As the total number of households does not exceed 600 in each village, the team’s polling of 200 households in each provided a high representative sample (>30%). The livelihoods of the polled village of Alango Tulu are dominated by local, household-level (small-scale) farming.  In the Dungugi-Bekele, the team focused on resident farmers though it was recognised that there are many irrigators who rent and cultivate land but don’t reside in the village.

The results of these questionnaires are eagerly awaited by the whole GroFutures team. A small sample of 30 questionnaires will be reviewed immediately by fellow GroFutures team members, Gebrehaweria Gebregziabher (IWMI) and Imogen Bellwood-Howard (IDS), and the Tanzanian colleagues (Andrew Tarimo and Devotha Mosha-Kilave) as they prepare shortly to trial the same questionnaire in the Great Ruaha Basin Observatory.

Photos: GroFutures social science team of the Upper Awash Basin in Ethiopia conducting household questionnaire survey in rural communities within the Becho and Koka Plains (GroFutures research team)

New Paper – Roads for water: the unused potential

Image

A new paper by Diego Garcia-Landarte Puertas, Kifle Woldearegay, Lyla Mehta, Martin Van Beusekom, Marta Agujetas Peréz and Frank Van Steenbergen from the Catalyst Project: Optimising Road Development for Groundwater Recharge and Retention

Download the open access Waterlines paper from Practical Action.

Abstract:

“Roads are generally perceived as infrastructure to deliver transport services, but they are more than that. They are major interventions in the hydrology of areas where they are constructed – concentrating runoff and altering subsurface flows. At present, water-related damage constitutes a major cost factor in road maintenance. Using ongoing research from Ethiopia, this article argues to reverse this and turn water from a foe into a friend and integrate water harvesting with road development.

Continue reading New Paper – Roads for water: the unused potential

“FLUORIDE IN GROUNDWATER: A DEBILITATING SCOURGE” Catalyst Project Webinar, 2 May

UPDATED 9 MAY

Watch recording

Part 1: Dr Seifu Kebede- Genesis of Fluoride in Groundwater in Ethiopia
Part 2: Sara Datturi- Fluorosis Mitigation in Ethiopian Central Rift Valley
Part 3: Q and A session

Fluorine is an element abundant in nature. In the right quantities, it is essential for the development of teeth and bones. However, under specific conditions, the concentration of fluoride (F) in ground and surface water can exceed safety levels and becomes toxic for human health. This may lead to skeletal and/or dental fluorosis, two chronic biogeochemical diseases that occur in various countries around the world.

Continue reading “FLUORIDE IN GROUNDWATER: A DEBILITATING SCOURGE” Catalyst Project Webinar, 2 May

UPGro research paper on Sketetal Fluorosis in Ethiopia

etaMeytaDSCN4512New paper by Redda Tekle-Haimanot, Gebeyehu Haile, part of the “Improving access to safe drinking water_prospection for low-fluoride sources Groundwater” Catalyst Project

ABSTRACT This study compared the occurrence of skeletal fluorosis in chronic consumers of locally brewed alcoholic beverages and their matched controls in the Ethiopian Rift Valley. The study revealed that chronic alcohol consumers developed severe forms of crippling skeletal fluorosis quite early in life. The controls were either symptom-free or exhibited mild forms of the fluorosis. The study showed that crippling skeletal fluorosis was directly associated with the large volumes of the locally brewed beer and honey-mead consumption on a daily basis. Chemical analysis of the alcoholic beverages showed that high concentration of fluoride which was much higher than the fluoride in the water was used for the brewing process. From this study one would conclude that in communities residing in high fluoride areas, there should be awareness creation campaigns to point out the relationship of excessive consumption of locally brewed alcoholic drinks and skeletal fluorosis. Regulations should also be put in place to require producers of local alcoholic beverages to use low fluoride water for brewing.

Journal of Water Resource and Protection, 2014, 6, 149-155
Published Online February 2014 (http://www.scirp.org/journal/jwarp)
Download the paper here: http://dx.doi.org/10.4236/jwarp.2014.62020