UPGro at 44th IAH Congress

Once again, UPGro has a strong presence at the annual congress of the International Association of Hydrogeologists, which this year is in Dubrovnik, Croatia. UPGro highlights this year include:

T2.2. THE ROLE OF GROUNDWATER IN REDUCING POVERTY
Conveners: Alan Macdonald (BGS/Hidden Crisis) and Viviana Re

With presentations by:

T2.2.1 Tim Foster: “A Multi-Decadal Financial Assessment of Groundwater Services For Low-Income Households in Rural Kenya” (Gro For Good)

T2.2.4 Fabio Fussi: “Characterization Of Shallow Aquifers In Guinea Bissau To Support The Promotion Of Manual Drilling At Country Level” (Remote Sensing For Manual Drilling Catalyst)

T2.2.5 David Walker: “Comparison Of Multiple Groundwater Recharge Assessment Methods For A Shallow Aquifer: Why Are The Results So Varied?” (AMGRAF Catalyst)

T2.2.6 Adrian Healy: “Exploiting Our Groundwater Resource: Choices And Challenges In Managing The Water Commons”  (Upgro Spin-Off Project)

T2.2.9 Richard Taylor: “Large-Scale Modelling Of Groundwater Resources: Insight from The Comparison Of Models And In-Situ Observations In Sub-Saharan Africa” (GroFutures)

T2.2.11 Jade Ward: “Rapid Screening for Pathogens In Drinking Water: Preliminary Results From A National Scale Survey In Malawi” (Hidden Crisis)

T2.2.13 Alan Macdonald: “Hand Pump Functionality: Are The Rural Poor Getting A Raw Deal ?” (Hidden Crisis)

And in other sessions:

T2.3.3 Núria Ferrer: “How Do New Development Activities Affect Coastal Groundwater Systems In Africa? The Case Of Kwale, Kenya” (Gro for GooD)

T4.4.6 Richard Taylor: “Recent Changes in Terrestrial Water Storage In The Upper Nile Basin: An Evaluation Of Commonly Used Gridded Grace Products” (GroFutures)

T4.4.3 Albert Folch: “Combining Different Techniques To Monitor Seawater Intrusion Integrating Different Observation Scales” (Gro for GooD)

T2.6.1 Johanna Koehler: “A Cultural Theory of Groundwater Risks And Social Responses In Rural Kenya” (Gro for GooD)

Posters:

T2.2.14 Jacob Katuva: “Groundwater and Poverty – Evidence From Kwale, Kenya” (Gro for GooD)

T2.2.15 David Walker: “Investigating the Resilience of Shallow Groundwater Resources in Sub-Saharan Africa: A Case Study from Ethiopia” (AMGRAF Catalyst)

T2.3.14 Moshood N. Tijani: “Hydrogeological and Hydraulic Characterization of Weathered Crystalline Basement Aquifers of Ibarapa Area, Southwestern Nigeria” (GroFutures)

New UPGro paper: Better map-making for manual drilling in West Africa

In a new open paper in the Hydrogeological Journal, Dr Fabio Fussi and his UPGro Catalyst team present work done in Senegal that looks at how improving hydrogeological data, maps and understanding can improve the success of manually drilled boreholes.

In a region where access to safe, affordable water is limited, manual drilling provides a cost-effective way of tapping groundwater resources. However, aquifers are complex and striking fresh water is not guaranteed.

20140625_170547
Manual drilling in Lagos, Nigeria (photo: Dotun Adekile, 2014)

Fussi and his team propose a model that uses analysis of borehole logs for the to characterise shallow aquifers  so that areas suitable for manual drilling can be found. The model is based on available borehole-log parameters: depth to hard rock, depth to water, thickness of laterite (a iron-rich rock type common in the tropics) and hydraulic properties of the shallow aquifer. The model was applied to a study area in northwestern Senegal.

The hydraulic conductivity values – how easily water flows through rock –  were estimated from geological data and  partially validated by comparing them with measured values from a series of pumping tests carried out in large-diameter wells.

The results show that this method is able to produce a reliable interpretation of the shallow hydrogeological context using information generally available in the region.

The research contributes to improving the identification of areas where conditions are suitable for manual drilling, and has the potential to be used throughout Africa, and beyond, using data available in most African countries.

Ultimately, this work will support proposed international programs aimed at promoting low-cost water supply in Africa and enhancing access to safe drinking water for the population.

Groundwater – the earth’s renewable wealth

By Sean Furey, Skat Foundation/RWSN/UPGro

Where does wealth come from? At its most basic, it is the difference between how much you invest in a product or service and how much you get from selling it. If the difference is positive you get wealth, if it is negative then you get trouble.

For a country like Zambia, the biggest source of wealth comes from underground: copper, oil and many other minerals and metals. Every aspect of our lives, from fertilisers, to homes, to solar panels depends on what can be dug from the ground. The scale on which mining and quarrying is done varies from a single person digging a hole, to the world’s largest machines demolishing mountains. Mining is also an economic activity that stretches from the very local to the most globalised trade.

In that context, groundwater can also be seen as a mineral resource on which the wealth of a country depends, so it was great that UPGro and RWSN were invited by the University of Zambia to run a special session on hydrogeology in Africa at the International Conference on Geology, Mining, Mineral and Groundwater Resources of the Sub-Saharan Africa, held in Livingstone, Zambia, in July.

The conference was opened by the President of Zambia, HE Edgar Lungu, who stressed the importance of groundwater and mineral resources to the economy, society and environment of Zambia and Africa more widely.

He was followed by a keynote speech by UPGro Ambassador, Dr Callist Tindimugaya of the Ministry of Water & Environment Uganda who gave the 400+ audience an overview of exciting groundwater initiatives happening across Africa, in particular highlighting UPGro, GRIPP, RWSN’s work on drilling professionalisation,the Africa Groundwater Network and the re-boot of the AMCOW Africa Groundwater Commission which took place the following week in Dar es Salaam.

One of the eye-opening facts that was presented by the government during the event that more than half of electricity generated in Zambia is used by the mining industry and most of that is used for de-watering mines – pumping water out of the ground and dumping it – contaminated – into rivers. Clearly a change in mindset is needed to see groundwater as a source of wealth to be used wisely for the benefit of all, not a problem that sends money pouring down the drain.

photos: Dr Callist Tindimugaya gives a keynote presentation on Groundwater Resources Management in Sub-Saharan Africa: Status, Challenges and Prospects.

UPGro-RWSN Special Session on Hydrogeology in Africa and Drilling Professionalisation

Morning:

Afternoon:

Promising new groundwater pollution sensor – New UPGro paper published

1-s2.0-S0043135417302233-gr5
Field test set-up and data output from the MFC biosensor monitoring. A) The diagram shows an aerial view of the system configuration and distance between sensing system and data collection system. B) MFC1 and MFC2 were biosensors placed on the well; MFC3 and MFC4 were control biosensors placed in a vessel simulating the groundwater well. MFC3 and MFC4 were located in a room close to the well and the arrow indicates when they were intentionally contaminated. Monitoring of the sensors contained in the well lasted for 60 days obtaining the same trend as for the period shown.

Shallow groundwater wells, are the main source of drinking water in many rural and peri-urban communities.

The quantity and variety of shallow wells located in such communities make them more readily accessible than private or government operated deep boreholes, but shallow wells are more susceptible to faecal contamination, which is often due to leaching pit latrines.

For this reason, online monitoring of water quality in shallow wells, in terms of faecal pollution, could dramatically improve understanding of acute health risks in unplanned peri-urban settlements.

More broadly, inexpensive online faecal pollution risk monitoring is also highly relevant in the context of managed aquifer recharge via the infiltration of either stormwater or treated wastewater into the subsurface for aquifer storage and recovery.

 To tackle this challenge, IN-GROUND – an UPGro Catalyst Project – trialled four different types of Microbial Fuel Cell (MFC) water quality biosensor in the lab (Newcastle University, UK) and in the field (Dar Es Salaam, Tanzania).  

While further work is needed, the results provided proof-of-concept that these biosensors can provide continuous groundwater quality monitoring at low cost and without need for additional chemicals or external power input.

 Full details of the work can be founded in this open access paper: Velasquez-Orta SB, Werner D, Varia J, Mgana S. Microbial fuel cells for inexpensive continuous in-situ monitoring of groundwater quality. Water Research 2017, 117, 9-17. 

 For more details contact Dr Sharon Velasquez-Orta 

New pollution risk maps for Africa to help with achieving safe water for everyone

Africa_Risk_map

Media Release: World Water Day 22 March

New pollution risk maps for Africa to help with achieving safe water for everyone.
Responding to UNICEF/WHO report on Safely managed drinking water

The United Nations Children’s Fund (UNICEF) and the World Health Organisation (WHO) have published a key Joint Monitoring Programme (JMP) report on “Safely managed drinking water”[1]. It explains the way that the progress in improving drinking water will be measured across the world in pursuit of the Sustainable Development Goal Target 6.1 of achieving universal and equitable access to safe and affordable drinking water for all by 2030[2]. This is an immensely challenging target, particularly in many countries in Sub-Saharan Africa, which failed to reach the Millennium Development Goal Target of halving the number of people without access to an “improved” water source between 1990 and 2015.

For governments, aid agencies and citizens, a key question has been – what do we mean by “safe” water? This new JMP report starts to provide some of those answers. They define it to mean water that is “free from pathogens and elevated levels of toxic substances at all times”.  For many areas, the most accessible safe water is from the ground – from boreholes, wells and springs. But this is not the case everywhere.

There is no question about the importance of groundwater in sub-Saharan Africa, where it provides drinking water supplies for at least 170 million people. In comparison with surface water, groundwater is widely known for its greater reliability, resilience to climate variations and reduced vulnerability to pollution. However, groundwater contamination does occur when waste from households, municipalities, livestock, agriculture, hospitals and industries (including mining) is able to make its way Inadequate management of household and industrial waste is leading to the pollution of groundwater resources in urban centres in sub-Saharan Africa.

In a new landmark study just published[3], reviewed all the available data and studies on urban groundwater across the continent and build up a map of aquifer pollution risk (Fig. 1)

The lead researcher, Dr Daniel Lapworth, of the British Geological Survey, said: “Despite the risk to the health of millions of people across the continent, very little is routinely monitored. If there is any chance of achieving the Sustainable Development Goal targets – and adapting to climate change – it is essential that governments and water utilities routinely monitor groundwater quality and take appropriate action to protect their precious water resources.”

“However, we are excited that our research through has developed a low-cost and robust way for measuring groundwater quality[4], and this approach is being rolled out in our work in Africa and India.”

Africa_Risk_map
Fig. 1: Relationship between urban centres in sub-Saharan Africa (SSA) and estimated aquifer pollution risk using an intrinsic aquifer modelling approach (Ouedraogo et al. 2016). The location of studies included in the paper are shown. Major cities in SSA are shown and are from the ESRI cities dataset (2006)

More information

UPGro is funded by UK Aid; the UK Natural Environment Research Council (NERC); and the UK Economic and Social Research Council (ESRC). Knowledge Broker: Skat Foundation, in partnership with the Rural Water Supply Network (RWSN) www.rural-water-supply.net

For more information:

NERC media office
01793 411939 / 07785 459139 /  pressoffice@nerc.ac.uk

More details can be found on http://upgro.org ; The Knowledge Broker for UPGro is Skat Foundation, based in St Gallen, Switzerland. Contact: Sean Furey (sean.furey@skat.ch ) for more information.

[1] https://data.unicef.org/resources/safely-managed-drinking-water/

[2] https://sustainabledevelopment.un.org/sdg6

[3] Lapworth, D.J., D. C. W. NkhuwaJ. Okotto-OkottoS. PedleyM. E. StuartM. N. TijaniJ. Wright “Urban groundwater quality in sub-Saharan Africa: current status and implications for water security and public health” Hydrogeol J (2017). doi:10.1007/s10040-016-1516-6

[4] Sorensen J, D.J. Lapworth, B.P. Marchant, D.C.W. Nkhuwa, S. Pedley, M.E. Stuart, R.A. Bell, M. Chirwa, J. Kabika, M. Liemisa, M. Chibesa (2015) “In-situ tryptophan-like fluorescence: A real-time indicator of faecal contamination in drinking water supplies” Water Research, Volume 81, 15 September 2015, Pages 38–46

On the road to resilience in Ethiopia

by Barry Hague, NERC (re-blogged from NERC Planet Earth)

It’s time to rethink roads. In the vital fields of flood prevention and water supply, they offer incredible potential to enhance and enrich the lives of some of the world’s poorest people. Dr Frank van Steenbergen of the Roads for Water consortium is helping to drive this remarkable revolution.

Continue reading On the road to resilience in Ethiopia

From Tyneside to Abidjan: UPGro @ 7th RWSN Forum

Pictured: Prof. Richard Carter on the UPGro stand at the 7th RWSN Forum

I had the pleasure of recently attending the 7th RWSN Forum, held from 29th November to 2nd December 2016 in Abidjan, Côte d’Ivoire.  The conference is only every five years so I am fortunate that it fell during the third year of my PhD giving me not only the opportunity to attend, but also the chance to contribute some of my own research completed thus far.

The conference delegates came from a mixture of backgrounds, from both local and global scale NGOs to government ministries, and from financiers like the World Bank to pump manufacturers.  It was a great opportunity to share experiences and create connections with people outside of the world of academia and consultancies, which dominated many other conferences that I have attended.

The 7th RWSN Forum was a chance for water infrastructure installers and financiers to learn more about the water resources which they are hoping to exploit.  The conference also allowed water resource researchers to find out what kind of information NGOs and ministries require in order to plan and manage interventions.

There were a number of oral and poster presentations and company stands at the RWSN Forum expounding solutions to WASH shortfalls and food insecurity, such as manual drilling technologies, solar and foot powered pumps, and smart technology to transmit water point equipment performance.  While all of these technologies undeniably have much to offer, without a reliable and renewable water resource their usefulness dwindles.  Therefore, the relevance of the UPGro projects in emphasising sustainable management of groundwater is clear.

An UPGro catalyst grant initiated the AMGRAF (Adaptive management of shallow groundwater for small-scale irrigation and poverty alleviation in sub-Saharan Africa) project in 2013.  The catalyst grant funded hydrogeological investigations, the setting up of a community‑based hydrometeorological monitoring programme, and gender separated focus groups in Dangila woreda, northwest Ethiopia.  My own research has developed from the AMGRAF project and concerns the potential for shallow groundwater resources to be used for irrigation by poor rural communities, lessening the reliance on increasingly inconsistent rains.  Research principally focuses on two field sites; Dangila in Ethiopia and in Limpopo province in South Africa.  The resilience of the shallow groundwater resources to climate variability and increasing abstraction is being assessed through modelling.  To construct the models, it is vital to have data on aquifer parameters as well as time series of rainfall, river flow and groundwater levels for model calibration.  The presentation I gave at the forum concerned the computation of these aquifer parameters from pumping tests of hand dug wells and the collection of the aforementioned time series via the community‑based monitoring program.

I enjoyed the week I spent in Côte d’Ivoire, a country that I may never have had the chance to visit without the RWSN Forum.  I believe the connections made with groundwater specialists from around sub-Saharan Africa will greatly benefit my PhD in terms of testing the transferability of the research with data from their countries.  Leaving Abidjan, I had the same feeling as everyone else I spoke to at the conference: “Please RWSN, why does this only happen every five years!”

David Walker, PhD Candidate, Newcastle University, UK – read his RWSN Forum Paper: “Properties of shallow thin regolith aquifers in sub-Saharan Africa: a case study from northwest Ethiopia [061]

UPGro at the RWSN Forum

Groundwater is critical to rural water supply – for many uses and in many parts of the world, not just in Africa. Therefore understanding of aquifers and how to use them sustainably is essential to tackling rural poverty.

So that is why we will be at the 7th RWSN Forum next week in Abidjan, Cote d’Ivoire, to present the work of UPGro and to network with delegates from all over Africa (and the world) on how interdisciplinary research in African groundwater can deliver tangible benefits.

Highlights to look out for:

We look forward to seeing you there!

Cultiver les données : comment les agriculteurs éthiopiens récoltent les données pour favoriser leurs semis #60IAH2016

Quel temps va-t-il faire ? Beaucoup de gens se posent la question, mais pour beaucoup d’Éthiopiens la réponse peut faire la différence entre affluence et pauvreté. L’Èthiopie est un pays riche et divers de près de 100 millions d’habitants, 88 langues différentes et une histoire ancienne et remarquable. Ses hauts plateaux sont humides et fertiles lors de la saison des pluies, alors que ses plaines désertiques comptent parmi les endroits les plus arides de la Terre.

Dangila woreda (district) est une zone montagneuse dans le nord ouest du pays avec une population de 160 000 personnes environ répartie sur 900 km2. Bien que la zone recoive 1 600mm de précipitations annuelles, plus de 90% des pluies ont lieu entre mai et octobre. Les agriculteurs, qui dépendent de leurs troupeaux et de leurs cultures pluviales, doivent absolument comprendre et prévoir les variations de précipitations pour assurer leur ubsistance. Les statégies traditionnelles, utilisées depuis des millénaires, sont menacées par les effets conjugués des changements climatiques, de la dégradation des sols et de la croissance démographique.

Le manque de données sur les précipitations, le débit des eaux de surface et le niveau des eaux souterraines empêche de savoir exactement ce qui passe actuellement et ce qui pourrait arriver ensuite. Dans la majeure partie de l’Afrique sub-saharienne, les gouvernements n’ont pas assez investi dans le suivi-évaluation des conditions environnementales, qui décline et rend de plus en plus difficile la gestion des ressources en eau.

Et si c’étaient ceux qui ont le plus à gagner d’une compréhension et d’une gestion améliorée des ressources en eau qui pilotaient la collecte des données ? Les communautés sont-elles capables de collecter des données fiables sur la météo, les riviéres et les eaux souterraines ? C’est ce qu’explore une équipe de chercheurs de l’Université de Newcastle au Royaume Uni avec le projet AMGRAF[i] financé par UPGro[1].

Dans une nouvelle publication dans le Journal of Hydrology, David Walker et ses collègues expliquent pourquoi ils pensent que la science citoyenne a un avenir dans les zones rurales d’Èthiopie et au delà :

« Les bénéfices de la participation des communautés aux démarches scientifiques sont progressivement reconnus dans plusieurs disciplines, notamment parce que cela permet au grand public de mieux comprendre la science et de mieux s’approprier les résultats, avec une certaine fierté même. Et cela sert à la fois les individus et les processus de planification locaux. » précise Walker. « Parce qu’il y a si peu de stations de suivi-évaluation officielles, et que les zones à étudier et à gérer sont si vastes, il nous faut penser à d’autres méthodes de collecte des données. »

Le programme de suivi-évaluatio communautaire a démarré en février 2014 et les habitants d’une zone appellée Dangesheta ont été impliqués dans l’implantation de nouvelles jauges pluviométriques et de rivières et dans l’identification des puits adéquats pour le suivi. Cinq puits sont jaugés manuellement tous les deux jours, avec une mesure de la profondeur et du niveau d’eau ; une jauge pluviométrique a été installée dans la métairie d’un résident qui effectuait les relevés quotidiennement à 9h ; deux jauges ont été installées sur les rivières Kilti et Brante et étaient relevés tous les jours à 6h et 18h. Chaque mois, les bénévoles remettaient le registre de leurs relevés au bureau du Dangila woreda district, qui les saisissait dans un fichier excel et les envoyait ensuite à l’équipe de recherche.

Mais ces données sont-elles fiables ? Pour David et ses collègues, c’était une question déterminante pour le succès ou l’échec du projet. La validation des données est toujours un défi, qui souffre généralement de deux types d’erreurs :

Les erreurs d’échantillonage proviennent de la variabilité des pluies, du débit des eaux de surface et du niveau des eaux souterraines dans le temps et dans l’espace. Ce type d’erreur augmente avec les précipitations et diminue avec une plus grande densité de jauges. Le défi dans les zones tropicales comme l’Éthiopie c’est que la plupart de la pluie tombe sous la forme d’orages diluviens, qui peuvent être assez courts et petits et donc faciles à rater, ou bien seulement partiellement relevés, si la densité des stations météo est faible.

Le deuxième type d’erreurs sont les erreurs d’observation, qui peuvent avoir plusieurs causes : des vents forts renversant la jauge, l’évaporation vidant la jauge, et bien sûr l’observateur qui peut ne pas  lire la jauge  correctement ou bien mal transcrire ses observations.

« C’est compliqué de relever les erreurs mais c’est possible, surtout en faisant des comparaisons statistiques avec les résultats de stations météo et d’autres sources bien établies» confie Walker. « Nous constatons que les données collectées par les communautés sont plus fiables que celles collectées par télédétection satellite. »

Nous espérons que cette approche prometteuse sera davantage soutenue et sera utilisée plus largement, mais quels sont les secrets et les défis d’une participation communautaire réussie ?

 

« Les gens sont au cœur du processus, donc la sélection des bénévoles est une étape fondamentale pour éviter la falsification des données ou le vandalisme » conclut Walker. « Les retours sur les résultats sont aussi absolument cruciaux: les données peuvent être présentées et analysées avec la communauté lors d’ateliers ou de réunions collectives, leur permettant ainsi de prendre des décisions sur la meilleure utilisation des précipitations, des eaux de surface et des eaux souterraines pour garantir l’approvisionnement en eau de leurs fermes et de leurs familles. »

Ces travaux de recherche se poursuivent grâce à une bourse[2] de REACH : Améliorer la sécurité hydrique pour les populations pauvres, un programme piloté par l’Université d’Oxford.

[1]               « UPGro – Libérer le potentiel des eaux souterraines pour les populations pauvres » est un programme de recherche international de 7 ans (2013-2019) qui est co-financé par le Département pour le développement international (DFID) du Royaume Uni, le Conseil de Recherche pour l’environnement naturel (NERC) et le Conseil de Recherche Economique et Sociale (ESRC). Il vise à renforcer et améliorer les données factuelles sur la disponibilité et la gestion des eaux souterraines en Afrique Sub-Saharienne (ASS), afin de permettre aux pays en développement de la région et à leurs partenaires d’utiliser ces eaux souterraines de façon durable au bénéfice des populations pauvres. Les projets UPGro sont interdisciplinaires, liant sciences sociales et sciences naturelles pour relever ce défi.

[2]               http://reachwater.org.uk/grants-catalyse-12-new-water-security-projects/

[i]               AMGRAF: Adaptive Management of GRoundwater for small scale-irrigation and poverty alleviation in sub-Saharan AFrica: https://upgro.org/catalyst-projects/amgraf/ and http://research.ncl.ac.uk/amgraf/

UPGro at the 43rd IAH Congress, Montpellier

Many UPGro researchers will be assembling in Montpellier, France for the 43rd Congress of the International Association of Hydrogeologists (IAH).

If you are going, looking out for the following presentations (the abstract links won’t work until after 25 September). You can find the full online programme on the event website: www.60iah2016.org/en/programme/final-programme

Continue reading UPGro at the 43rd IAH Congress, Montpellier