Promising new groundwater pollution sensor – New UPGro paper published

1-s2.0-S0043135417302233-gr5
Field test set-up and data output from the MFC biosensor monitoring. A) The diagram shows an aerial view of the system configuration and distance between sensing system and data collection system. B) MFC1 and MFC2 were biosensors placed on the well; MFC3 and MFC4 were control biosensors placed in a vessel simulating the groundwater well. MFC3 and MFC4 were located in a room close to the well and the arrow indicates when they were intentionally contaminated. Monitoring of the sensors contained in the well lasted for 60 days obtaining the same trend as for the period shown.

Shallow groundwater wells, are the main source of drinking water in many rural and peri-urban communities.

The quantity and variety of shallow wells located in such communities make them more readily accessible than private or government operated deep boreholes, but shallow wells are more susceptible to faecal contamination, which is often due to leaching pit latrines.

For this reason, online monitoring of water quality in shallow wells, in terms of faecal pollution, could dramatically improve understanding of acute health risks in unplanned peri-urban settlements.

More broadly, inexpensive online faecal pollution risk monitoring is also highly relevant in the context of managed aquifer recharge via the infiltration of either stormwater or treated wastewater into the subsurface for aquifer storage and recovery.

 To tackle this challenge, IN-GROUND – an UPGro Catalyst Project – trialled four different types of Microbial Fuel Cell (MFC) water quality biosensor in the lab (Newcastle University, UK) and in the field (Dar Es Salaam, Tanzania).  

While further work is needed, the results provided proof-of-concept that these biosensors can provide continuous groundwater quality monitoring at low cost and without need for additional chemicals or external power input.

 Full details of the work can be founded in this open access paper: Velasquez-Orta SB, Werner D, Varia J, Mgana S. Microbial fuel cells for inexpensive continuous in-situ monitoring of groundwater quality. Water Research 2017, 117, 9-17. 

 For more details contact Dr Sharon Velasquez-Orta 

From Tyneside to Abidjan: UPGro @ 7th RWSN Forum

Pictured: Prof. Richard Carter on the UPGro stand at the 7th RWSN Forum

I had the pleasure of recently attending the 7th RWSN Forum, held from 29th November to 2nd December 2016 in Abidjan, Côte d’Ivoire.  The conference is only every five years so I am fortunate that it fell during the third year of my PhD giving me not only the opportunity to attend, but also the chance to contribute some of my own research completed thus far.

The conference delegates came from a mixture of backgrounds, from both local and global scale NGOs to government ministries, and from financiers like the World Bank to pump manufacturers.  It was a great opportunity to share experiences and create connections with people outside of the world of academia and consultancies, which dominated many other conferences that I have attended.

The 7th RWSN Forum was a chance for water infrastructure installers and financiers to learn more about the water resources which they are hoping to exploit.  The conference also allowed water resource researchers to find out what kind of information NGOs and ministries require in order to plan and manage interventions.

There were a number of oral and poster presentations and company stands at the RWSN Forum expounding solutions to WASH shortfalls and food insecurity, such as manual drilling technologies, solar and foot powered pumps, and smart technology to transmit water point equipment performance.  While all of these technologies undeniably have much to offer, without a reliable and renewable water resource their usefulness dwindles.  Therefore, the relevance of the UPGro projects in emphasising sustainable management of groundwater is clear.

An UPGro catalyst grant initiated the AMGRAF (Adaptive management of shallow groundwater for small-scale irrigation and poverty alleviation in sub-Saharan Africa) project in 2013.  The catalyst grant funded hydrogeological investigations, the setting up of a community‑based hydrometeorological monitoring programme, and gender separated focus groups in Dangila woreda, northwest Ethiopia.  My own research has developed from the AMGRAF project and concerns the potential for shallow groundwater resources to be used for irrigation by poor rural communities, lessening the reliance on increasingly inconsistent rains.  Research principally focuses on two field sites; Dangila in Ethiopia and in Limpopo province in South Africa.  The resilience of the shallow groundwater resources to climate variability and increasing abstraction is being assessed through modelling.  To construct the models, it is vital to have data on aquifer parameters as well as time series of rainfall, river flow and groundwater levels for model calibration.  The presentation I gave at the forum concerned the computation of these aquifer parameters from pumping tests of hand dug wells and the collection of the aforementioned time series via the community‑based monitoring program.

I enjoyed the week I spent in Côte d’Ivoire, a country that I may never have had the chance to visit without the RWSN Forum.  I believe the connections made with groundwater specialists from around sub-Saharan Africa will greatly benefit my PhD in terms of testing the transferability of the research with data from their countries.  Leaving Abidjan, I had the same feeling as everyone else I spoke to at the conference: “Please RWSN, why does this only happen every five years!”

David Walker, PhD Candidate, Newcastle University, UK – read his RWSN Forum Paper: “Properties of shallow thin regolith aquifers in sub-Saharan Africa: a case study from northwest Ethiopia [061]

Data farming – how Ethiopian farmers harvest data to help their crops

What’s the weather doing? It’s a question that obsesses many but for many Ethiopians it is question that makes the difference between plenty and destitution.  Ethiopia is a rich and diverse country that is home to around 100 million people, 88 different languages and imbued with long, diverse history. Its highlands are seasonally wet and fertile and its lowland deserts are among the most parched places on Earth.

Dangila woreda, or district, is a hilly area in the north west of the country with a population of around 160,000 people spread across an area of about 900 km2. Although the area receives rainfall at around 1,600mm a year, over 90% of this falls between May and October.  For farmers, who depend on livestock and rainfed crops, understanding and predicting these rains is crucial to their livelihoods. Traditional strategies, which have served for millennia, are coming under threat from new pressures of shifting climate patterns, land degradation and population growth.

Exactly what is happening now and what is likely to happen in the future is uncertain due to the lack of rainfall, river flow and groundwater level data.  Throughout much of Sub-Saharan Africa, under-investment by governments has led to a widespread decline in environmental monitoring, and this in turn makes water resources management harder and harder.

But what if those who stood to gain most from better understanding and management of water resources were those leading the data collection? Can communities reliably collect accurate weather, river and groundwater data? This is the question that is being investigated by researchers, led by Newcastle University in the UK through an UPGro-supported[i] project called AMGRAF[ii]).

In a new paper in the Journal of Hydrology[iii], David Walker and his colleagues explain why they think citizen science has a future in rural Ethiopia and beyond:

“The benefits of community involvement in science are being slowly recognised across many fields, in large part because it helps build public understanding of science, ownership and pride in the results, and this can benefit both individuals and local planning processes,” said Walker.  “Because there are so few formal monitoring stations and such large areas that need to be understood and managed, we need to think differently about how data collection can be done.”

The community-based monitoring programme was started in February 2014 and residents of an area called Dangesheta were involved in the siting new rain and river gauges, and identifying wells that were suitable to be monitored.  Five wells are manually dipped every two days, with a deep meter to measure the depth from the ground surface and the water level in the well; a rain gauge was installed in the smallholding of a resident who then took measurements every day at 9am; two river gauge boards were installed in the Kilti and Brante rivers and were monitored daily at 6am and 6pm. Every month, the volunteers would then give their hard copy records to the Dangila woreda government office, who then typed them into an Excel spreadsheet and emailed to the research team.

But is this data any good? For David and his colleagues, this was a critical question that could make or break the whole approach.  The challenges of data validation are substantial, and there are generally two types of error:

Sampling errors come from the variability of rainfall, river flow and groundwater level over time and over area. The sampling error increases with rainfall and decreases with increased gauge density. A challenge in tropical areas, such as Ethiopia, is much of the rain is high-intensity thunderstorms, which can be quite short in duration and small in size, and therefore easy to miss, or only partially record, if the density of monitoring stations is low.

Observational errors are the second type, and can come from a number of things:  wind turbulence, splashing around the gauge, evaporation can affect how much is in the rain gauge, and then the observer might not read the gauge accurately or make a mistake or unclear notation, when writing the measurement down.

“Tracking down errors is tricky, but it can be done, mainly through statistical comparison with established monitoring stations and with each other,” said Walker. “What we found was that the community collected data is more reliable than that gathered through remote sensing instruments from satellites.”

It is hoped that this promising approach can attract further support and be used more widely, but what are the secrets, and challenges, to making community monitoring work?

“People are at the heart of this process and selection of volunteers is crucial to avoid problems with data falsification or vandalism,” concluded Walker.  “Feedback is absolutely vital and through workshops and meetings the data can be presented and analysed with the community so that they can make decisions on how best use the available rainfall, river flows, and groundwater to provide secure sources of water for their farms and their homes.”

 

Research continues through a research grant[1] from REACH: Improving water security for the poor, a programme led by Oxford University.

Figure 1:

[1] http://reachwater.org.uk/grants-catalyse-12-new-water-security-projects/

[i] “UPGro – Unlocking the Potential of Groundwater for the Poor” is a seven-year international research programme (2013-2019) which is jointly funded by UK’s Department for International Development (DFID), Natural Environment Research Council (NERC) and in principle the Economic and Social Research Council (ESRC). It focuses on improving the evidence base around groundwater availability and management in Sub-Saharan Africa (SSA) to enable developing countries and partners in SSA to use groundwater in a sustainable way in order to benefit the poor. UPGro projects are interdisciplinary, linking the social and natural sciences to address this challenge. T

[ii] AMGRAF: Adaptive Management of GRoundwater for small scale-irrigation and poverty alleviation in sub-Saharan AFrica: https://upgro.org/catalyst-projects/amgraf/ and http://research.ncl.ac.uk/amgraf/

[iii] D. Walker et al, “Filling the observational void: Scientific value and quantitative validation of hydrometeorological data from a community-based monitoring programme” Journal of Hydrology 538 (2016) 713-725 http://www.sciencedirect.com/science/article/pii/S0022169416302554

UPGro Catalyst Researcher recognised as a leading ‘Innovator under 35’ by MIT Technology Review

Dr Sharon Velasquez Orta (Newcastle University) has been recognised by the MIT Technology Review as one the leading “Innovators under 35” for 2015 for her work on developing a low-cost biosensor of measuring groundwater quality. In the UPGro Catalyst project (INGROUND), she and colleagues from Newcastle University and Ardhi University have been developing the sensor in the lab and trialling it in Tanzania:

“Her biosensor detects fecal contamination in water reserves destined for human consumption”

“In low resource areas, like sub-saharan Africa, the absence of water quality data poses a serious risk. For this reason, Sharon Velasquez has harnessed the degradation process undertaken by some organic bacteria to generate electricity which allows her biosensor to detect fecal contamination within the water source.

“The microbial fuel cells (MFC) that Velasquez uses work like batteries, the difference being that with MFCs the current flow is generated by the electrically charged components that batteries produce upon charging.

“In this way it is possible to create sensors that detect the organic material present in the medium as the bacteria begins to metabolize the organic material.

“Velasquez´s biosensor is characteristic due to its cylindrical shape which allows the resulting chemical reaction to happen directly in the environment.

“This technology aims to address the issue of fecal contamination of water supplies, given that this cannot be continuously controlled via existing systems because the detection process is lengthier and requires greater human resources.”

The INGROUND project is due for completion later this year.

Source: http://innovatorsunder35.com/innovator/sharon-vel%C3%A1squez (accessed 13.08.2015)