Meeting Kenyan girls’ thirst for groundwater knowledge through ‘Water Clubs’

by Nancy Gladstone and Saskia Nowicki, Gro for GooD project, November 2017

Red dye spreading through a model ‘aquifer’ helps girls from Kingwede School in Kwale County, Kenya understand how pollutants travel in groundwater. The students are part of a school water club supported by the Gro for GooD project in partnership with mining company Base Titanium Ltd. Maji (water in Swahili) clubs  at 3 secondary schools within the Gro for GooD study area are proving to be an effective outreach mechanism for the groundwater research project. Almost 100 students are involved and over half of them are girls. The focus is on learning through activities, which have included hands-on sessions about groundwater recharge, storage and pollution using aquifer kits; practical experiments using water quality tests to demonstrate simple water filters and safe water storage; installing and gathering data from rain gauges; and field trips to see industrial water use and borehole drilling.

We asked the girls at Kingwede Maji to write a short paragraph on why they signed up to the club. Their responses indicated just how aware they are of the problems associated with inadequate water management – the risk of disease, time-consuming treks to waterpoints, seasonal water scarcity — and just how motivated they are to find solutions.

collecting samples
Students at Mivumoni School collecting samples for water quality testing during a club activity led by Geofrey Wekesa (teacher and researcher, also pictured above)

 

“Where I live we have rivers and also other sources of water. Our water get polluted especially the river water mainly from animal waste. I am in this club so that I can know how to treat the water so that it can be safe for use.” Munirah R.

“I am so eager to know how that water from the river may reach nearer where we can easily get it. Reason being that from our homes to the river is quite a long distance and it usually takes us almost a whole day looking for the water. Which is time wasting and also tiresome.” Jackline K.

“The reason as to why I am interested in this water project is to know why some of the areas in Kwale County and all other parts in our country have scarce water supply? And what causes this? And what are the things which we can do to avoid this?” Halimah A.

The clubs are now working on group projects with remote support (via WhatsApp groups!) from staff and students at the University of Oxford. Meanwhile, Gro for GooD researchers and the clubs’ champion teachers are preparing material for a resource package that will capture the learning from the programme. We are also working on developing partnerships and networks for wider dissemination of the resources in Kenya.

visit.png
Students from Kingwede Girls School learning about industrial water use on a trip to Base Titanium mine. A major goal of the initiative is showcasing career options and pathways in environmental science and management.

It is inspiring how much these students want to deepen and share their understanding of water. Whether they decide to pursue careers in water management or simply become better-informed members of groundwater-reliant communities, the knowledge they gain through the water clubs will help them have a positive impact.

“When the club was introduced to my school I saw it as a big opportunity and decided to join it because I knew I would get ideas that would help back at home. My hope is that I will learn several ways to purify water which will bring an impact back to my home county.” Fatma M.

Weblinks:

 

The Economist: An innovative cure for broken water pumps in Africa

An article published yesterday in The Economist has highlighted the role of innovative use of technology to unlock the potential of rural water service delivery in Africa. They report on the work being done by the Gro for GooD team, led by Oxford University, that is showing that by reducing pump downtime from an average of 27 days to less than 3, people’s willingness to pay for the water service increases five fold.

If you would like to know more about the innovative ‘Smart Handpump’, featured in a BBC article this week, and Fundifix enterprise, then you can find links to papers, presentations and films on the Gro for GooD page.

BBC: ‘Good vibration’ hand pumps boost Africa’s water security

Published: http://www.bbc.com/news/science-environment-39077761

The simple up-and-down motion of hand pumps could help scientists secure a key water source for 200 million people in Africa.

Growing demand for groundwater is putting pressure on the resource while researchers struggle to accurately estimate the future supply.

But a team from Oxford University says that low-cost mobile sensors attached to pumps could solve the problem.

Their study shows that pump vibrations record the true depth of well water.

Continue reading BBC: ‘Good vibration’ hand pumps boost Africa’s water security

This is why there is a handpump in the car park – and what it has in common with a jet engine

On 17th September, the mystery surrounding the Samrat handpump which has been installed in the car park of Oxford University’s School of Geography and the Environment was revealed. Learn more about the pump’s research purpose at www.oxwater.uk/oxford-smart-handpump.html or download the presentation below.

W. Mike Edmunds Memorial Lecture

Prof Alan MacDonald of the British Geological Survey to deliver the first W. Mike Edmunds Memorial Lecture on the theme of ‘groundwater and climate resilience’

3 November 2016, 5:00pm
Blue Boar Lecture Theatre, Christ Church

In a career spanning almost 50 years, Professor W. Mike Edmunds made an extraordinary
contribution to water science and water resource management globally. Mike led advances in geochemistry – particularly hydrogeochemistry and palaeohydrology – authored over 150 scientific publications and mentored numerous water professionals in the process. In recognition of his outstanding work, Mike received many accolades including the Whittaker Medal (1999), the O.E. Meinzer Award (2009), and the Vernadsky Medal (2010). Mike is remembered not only for his scientific achievements, but for his passion, warmth and generosity of spirit which touched the lives of many. This lecture aims to honour his legacy by promoting good hydrogeological science to the service of society: something Mike was deeply passionate about.

Groundwater and climate resilience

The first Mike Edmunds Memorial Lecture will address ‘groundwater and climate resilience’. As the world’s largest store of usable freshwater, groundwater is central to how humans are responding to the challenges posed by climate change. Currently, groundwater abstraction comprises more than 35% of global water use and this is forecast to increase as people seek to mitigate the effects of climate extremes on food and water security. However, this raises the question of how resilient groundwater is to change. In rural Africa, most households depend on groundwater to meet basic water needs, with few affordable alternatives particularly during the dry season. In Asia, groundwater underpins agricultural productivity, again with few realistic alternatives if groundwater resources were to prove unreliable.

In this talk, Prof Alan MacDonald will explore the resilience of groundwater to change and the challenges posed by climate change and increasing abstraction. Drawing on recent and ongoing research projects in Africa and South Asia, he will show how, with an understanding of hydrogeology, it is possible to plan for the future.

About the speaker

Prof Alan MacDonald is a Principal Hydrogeologist at the British Geological Survey and Honorary Professor of Groundwater at the University of Dundee. His work focuses on applied groundwater science, particularly in Africa and South Asia in the context of environmental change, water security and poverty reduction. Alan has 25 years research experience and has published 70 peer-reviewed papers, two groundwater books and more than 100 BGS Technical reports. He also collaborated with Mike on a number of publications. Alan leads international groundwater research at BGS and manages a small team of groundwater scientists and several PhD students based in Edinburgh.

For further information and online registration click here.

Why is there a handpump in the car park?

Invitation to launch event 17 October at 5-6pm

About the Smart Handpump

Delivering reliable drinking water to millions of rural people in Africa and Asia is an elusive and enduring global goal. A systematic information deficit on the performance of and demand for infrastructure investments limits policy design and development outcomes.

Since 2010, the ‘Smart Handpump’ project has been exploring new technologies, methods and models to understand and respond to this challenge. A mobile-enabled data transmitter provides foundational data on hourly water usage and failure events which has enabled the establishment of performance-based maintenance companies in Kenya that are improving handpump reliability by an order of magnitude.

The research is a collaboration between the School of Geography and the Environment and the Department of Engineering Science with a range of partners including government, international bodies such as UNICEF and the private sector. New research involves modelling the accelerometry data from the handpumps to predict aquifer depth.
We invite you to test the Smart Handpump in the car park and debate how the ‘accidental infrastructure’ of rural handpumps can spark bolder initiatives to deliver water security for millions of poor people in Africa and Asia.

17 October 2016 at 5-6pm
Hertbertson Room and the Car Park, School of Geography and the Environment, South Parks Road, Oxford, OX1 3QY

Cultiver les données : comment les agriculteurs éthiopiens récoltent les données pour favoriser leurs semis #60IAH2016

Quel temps va-t-il faire ? Beaucoup de gens se posent la question, mais pour beaucoup d’Éthiopiens la réponse peut faire la différence entre affluence et pauvreté. L’Èthiopie est un pays riche et divers de près de 100 millions d’habitants, 88 langues différentes et une histoire ancienne et remarquable. Ses hauts plateaux sont humides et fertiles lors de la saison des pluies, alors que ses plaines désertiques comptent parmi les endroits les plus arides de la Terre.

Dangila woreda (district) est une zone montagneuse dans le nord ouest du pays avec une population de 160 000 personnes environ répartie sur 900 km2. Bien que la zone recoive 1 600mm de précipitations annuelles, plus de 90% des pluies ont lieu entre mai et octobre. Les agriculteurs, qui dépendent de leurs troupeaux et de leurs cultures pluviales, doivent absolument comprendre et prévoir les variations de précipitations pour assurer leur ubsistance. Les statégies traditionnelles, utilisées depuis des millénaires, sont menacées par les effets conjugués des changements climatiques, de la dégradation des sols et de la croissance démographique.

Le manque de données sur les précipitations, le débit des eaux de surface et le niveau des eaux souterraines empêche de savoir exactement ce qui passe actuellement et ce qui pourrait arriver ensuite. Dans la majeure partie de l’Afrique sub-saharienne, les gouvernements n’ont pas assez investi dans le suivi-évaluation des conditions environnementales, qui décline et rend de plus en plus difficile la gestion des ressources en eau.

Et si c’étaient ceux qui ont le plus à gagner d’une compréhension et d’une gestion améliorée des ressources en eau qui pilotaient la collecte des données ? Les communautés sont-elles capables de collecter des données fiables sur la météo, les riviéres et les eaux souterraines ? C’est ce qu’explore une équipe de chercheurs de l’Université de Newcastle au Royaume Uni avec le projet AMGRAF[i] financé par UPGro[1].

Dans une nouvelle publication dans le Journal of Hydrology, David Walker et ses collègues expliquent pourquoi ils pensent que la science citoyenne a un avenir dans les zones rurales d’Èthiopie et au delà :

« Les bénéfices de la participation des communautés aux démarches scientifiques sont progressivement reconnus dans plusieurs disciplines, notamment parce que cela permet au grand public de mieux comprendre la science et de mieux s’approprier les résultats, avec une certaine fierté même. Et cela sert à la fois les individus et les processus de planification locaux. » précise Walker. « Parce qu’il y a si peu de stations de suivi-évaluation officielles, et que les zones à étudier et à gérer sont si vastes, il nous faut penser à d’autres méthodes de collecte des données. »

Le programme de suivi-évaluatio communautaire a démarré en février 2014 et les habitants d’une zone appellée Dangesheta ont été impliqués dans l’implantation de nouvelles jauges pluviométriques et de rivières et dans l’identification des puits adéquats pour le suivi. Cinq puits sont jaugés manuellement tous les deux jours, avec une mesure de la profondeur et du niveau d’eau ; une jauge pluviométrique a été installée dans la métairie d’un résident qui effectuait les relevés quotidiennement à 9h ; deux jauges ont été installées sur les rivières Kilti et Brante et étaient relevés tous les jours à 6h et 18h. Chaque mois, les bénévoles remettaient le registre de leurs relevés au bureau du Dangila woreda district, qui les saisissait dans un fichier excel et les envoyait ensuite à l’équipe de recherche.

Mais ces données sont-elles fiables ? Pour David et ses collègues, c’était une question déterminante pour le succès ou l’échec du projet. La validation des données est toujours un défi, qui souffre généralement de deux types d’erreurs :

Les erreurs d’échantillonage proviennent de la variabilité des pluies, du débit des eaux de surface et du niveau des eaux souterraines dans le temps et dans l’espace. Ce type d’erreur augmente avec les précipitations et diminue avec une plus grande densité de jauges. Le défi dans les zones tropicales comme l’Éthiopie c’est que la plupart de la pluie tombe sous la forme d’orages diluviens, qui peuvent être assez courts et petits et donc faciles à rater, ou bien seulement partiellement relevés, si la densité des stations météo est faible.

Le deuxième type d’erreurs sont les erreurs d’observation, qui peuvent avoir plusieurs causes : des vents forts renversant la jauge, l’évaporation vidant la jauge, et bien sûr l’observateur qui peut ne pas  lire la jauge  correctement ou bien mal transcrire ses observations.

« C’est compliqué de relever les erreurs mais c’est possible, surtout en faisant des comparaisons statistiques avec les résultats de stations météo et d’autres sources bien établies» confie Walker. « Nous constatons que les données collectées par les communautés sont plus fiables que celles collectées par télédétection satellite. »

Nous espérons que cette approche prometteuse sera davantage soutenue et sera utilisée plus largement, mais quels sont les secrets et les défis d’une participation communautaire réussie ?

 

« Les gens sont au cœur du processus, donc la sélection des bénévoles est une étape fondamentale pour éviter la falsification des données ou le vandalisme » conclut Walker. « Les retours sur les résultats sont aussi absolument cruciaux: les données peuvent être présentées et analysées avec la communauté lors d’ateliers ou de réunions collectives, leur permettant ainsi de prendre des décisions sur la meilleure utilisation des précipitations, des eaux de surface et des eaux souterraines pour garantir l’approvisionnement en eau de leurs fermes et de leurs familles. »

Ces travaux de recherche se poursuivent grâce à une bourse[2] de REACH : Améliorer la sécurité hydrique pour les populations pauvres, un programme piloté par l’Université d’Oxford.

[1]               « UPGro – Libérer le potentiel des eaux souterraines pour les populations pauvres » est un programme de recherche international de 7 ans (2013-2019) qui est co-financé par le Département pour le développement international (DFID) du Royaume Uni, le Conseil de Recherche pour l’environnement naturel (NERC) et le Conseil de Recherche Economique et Sociale (ESRC). Il vise à renforcer et améliorer les données factuelles sur la disponibilité et la gestion des eaux souterraines en Afrique Sub-Saharienne (ASS), afin de permettre aux pays en développement de la région et à leurs partenaires d’utiliser ces eaux souterraines de façon durable au bénéfice des populations pauvres. Les projets UPGro sont interdisciplinaires, liant sciences sociales et sciences naturelles pour relever ce défi.

[2]               http://reachwater.org.uk/grants-catalyse-12-new-water-security-projects/

[i]               AMGRAF: Adaptive Management of GRoundwater for small scale-irrigation and poverty alleviation in sub-Saharan AFrica: https://upgro.org/catalyst-projects/amgraf/ and http://research.ncl.ac.uk/amgraf/

The Smart Handpump comes to Oxford

from: http://www.geog.ox.ac.uk/news/articles/160526-smart-handpump.html

The ‘Smart Handpump’ was developed in 2011 by a team at Oxford University with a field-ready prototype starting operational trials in Kenya in 2012. These trials demonstrated proof-of-concept for remote monitoring of handpumps using simple microprocessor, accelerometer and global system for mobile communications (GSM) components. Smart Handpumps provide hourly data related to pump usage, providing information on functionality as well as insights into daily and seasonal water use patterns.

In 2014, a preliminary analysis of the high frequency accelerometer data to show that the “noise” generated by pumping also contains useful information. High-rate waveforms from the data can be processed using robust machine learning methods that are sensitive not only to the dynamics of the whole system but also the subtle interaction between the user and the pump. The small changes in pump dynamics and the subtle reactions of the user become a prominent signal in determining the deterioration of pump mechanics and imminent failure. This same signal can also be used to for shallow aquifer monitoring at the pump and user phenotyping.

The SoGE borehole is drilled to 7m and will have a Samrat handpump installed. This suction pump is commonly used at shallow wells in Bangladesh. The different dynamics of this pump, compared to current studies on deep well Afridev pumps in Kenya, will enable researchers to build a more robust predictive algorithm that is able to distinguish across multiple pump types, user characteristics, and aquifer variabilities.

These data will be used to produce a low-cost predictive maintenance system that is scalable across large rural regions. This work is being supported by UNICEF, funded through a competitive tender process, as part of their Product Innovation portfolio. Field testing will be conducted in partnership with UNICEF country programmes in Eastern and Southern Africa.

By retrofitting a simple and inexpensive device to a standard pump handle the smart handpumps are able to pro-actively monitor the condition of handpumps and ensure that millions of people can have access to a reliable water source.

Take a look at the video to see our work in Kwale County in Kenya in action.

This project is a collaboration between Oxford University’s Engineering Department and Smith School of Enterprise and the Environment at the School of Geography and the Environment. In addition to UNICEF, the Smart Handpumps work is supported through REACH – Improving Water Security for the Poor and Gro for GooD – Groundwater Risk Management for Growth and Development, both major research initiatives funded by DFID and the UK Research Councils.

 

Can a rural handpump tell you it’s not well?

Heloise Greeff, Doctoral Researcher, Water Programme, Computational Health Informatics Lab and Smith School of Enterprise and the Environment, University of Oxford

Predictive health monitoring is widely used in engineering applications to detect damage to infrastructure as early as possible. Forecasting failure rather than merely detecting failure once it occurs helps to reduce the downtime of systems. Ideally, predictive maintenance can be used to avoid downtime completely. With this approach already widely used in many fields from commercial and military jet engines to patient monitoring in health systems, it is now being extended to monitoring the condition of handpumps in rural villages.

Continue reading Can a rural handpump tell you it’s not well?

How do you solve a problem like a broken water pump?

World Water Day 2016 article on The Guardian by Katherine Purvis, 22/03/2016

Long considered a symbol of development aid, up to 40% of handpumps in sub-Saharan Africa are broken at any one time. Technology is offering smart solutions.

Over the past few decades, the humble handpump has become the go-to option for rural water supply in developing countries. They’re used to extract groundwater which is mostly clean, easy and cheap to access, and available year-round. Handpumps are usually a better option than open wells – which are highly vulnerable to contamination – and piped schemes or motorised pumps, which require the skills, finances, and management that’s often lacking in remote, rural areas.

Read more on the Guardian website