Study shows boreholes are key to drought resilience in Ethiopia

BGS Press Release

Installing more boreholes to tap underground water will improve rural Ethiopian
communities’ resilience to drought, according to a new report.

Research carried out by the British Geological Survey (BGS), the University of Addis Ababa and the Overseas Development Institute (ODI) showed that people who have access to groundwater from boreholes are much less affected by drought than those who rely on wells or springs for their water supply. The report also links the shortage of water to:

  • conflict in local areas
  • migration
  • a decline in breastfeeding rates
  • a rise in miscarriage rates
  • more children missing school

Groundwater experts from the BGS monitored 19 hand-dug wells, springs and boreholes in two districts in northern Ethiopia over 18 months. They also held focus-group discussions with local people, including school and health centre staff, near each of the groundwater sources.

The team found that boreholes drilled to 50–100 m were the most reliable source of water during the extended drought of 2015–16 and through the dry season.

Prof Alan MacDonald, the BGS hydrogeologist who led the research, said: ‘We found that
boreholes equipped with hand pumps were more reliable than springs or hand-dug wells, and this reliability was not affected by drought or seasonal change. As hand-dug wells dried up and springs failed, the boreholes we monitored gave exactly the same flow throughout the year.

‘Boreholes also had better water quality. As the drought ended and rain started falling many of the springs and hand-dug wells became grossly contaminated. The boreholes performed much better, with less than half of them showing any level of contamination.

‘Our findings make a clear case for the installation of more boreholes to improve resilience to drought. If constructed carefully and regularly maintained, boreholes can transform the water security for rural villages and make them much more resilient to the effects of climate change.’

Dr Seifu Kebede, from Addis Ababa University’s earth sciences department, said:

‘A significant finding of our study is the length of time people without boreholes spent in water collection during the dry season and drought, and the very low volumes of water they were able to collect.

‘People were routinely queuing for up to 10 hours, which led to tension and sometimes violence, and had wide-ranging impact across communities. Women breastfed less and experienced more miscarriages, meals were missed and farm work was reduced to help collect water. School attendance was down in all but one district, as children were involved in water collection. All health centres in the study area reported increases in diseases, and, in some cases, employees were paying for water collection to keep the centres functioning.

‘We must look at how communities source water during a normal dry season to predict how they will cope during drought years. This study shows that boreholes, where they can be installed, could be the most reliable source of groundwater in these areas of northern Ethiopia.’

According to the BGS’s African Groundwater Atlas, Ethiopia has a high potential for groundwater in the highland regions due to the mostly permeable rocks. A major challenge, however, is the rugged terrain, which can hinder the movement of drilling rigs.

The project was funded by the Natural Environment Research Council (NERC) and the Department for International Development (DfID).

The full paper is available in Environmental Research Letters.

For further details please contact:
Sarah McDaid (sarah@mcdaidpr.co.uk/07866789688)
Twitter: @BritGeoSurvey


Editors note:

This week, groundwater experts from around the world will be attending a meeting of GRIPP at the SIWI World Water Week to discuss how to governments and aid agencies can take evidence like this into account when designing and implementing their policies and projects, and specifically around an exciting new groundwater initiative with the African Minister’s Council on Water (AMCOW)

Different perspectives on ways to make a living from groundwater, in Tanzania and Ethiopia

Lessons from the GroFutures Multi-stakeholder Workshops in the Great Ruaha Basin, Tanzania, and Upper Awash Basin, Ethiopia

by John Thompson, Imogen Bellwood-Howard, Gebrehaweria, Gebregziabher, Mohammad Shamsudduha, Richard Taylor, Devotha Kilave, Andrew Tarimo and         Japhet Kashaigili

Identifying and characterising groundwater development pathways

More than four years ago, an international group of collaborators embarked on a comparative study of ‘Groundwater Futures in Sub-Saharan Africa’ (GroFutures – http://grofutures.org/) in three ‘basin observatories’, the Great Ruaha in Tanzania, the Upper Awash in Ethiopia, and the Iullummeden in Niger and Nigeria. One key aim of the project was to identify a range of existing, emerging and potential ‘groundwater development pathways’ in each basin.

This work linked interdisciplinary, multi-scale research with a deliberative, multi-stakeholder engagement process in order to inform groundwater planning processes in the basins. Attempts were made to co-locate physical infrastructure to assess groundwater recharge and storage (i.e. piezometer arrays, soil-moisture probes, rain gauges) with key stakeholder communities where the social science was conducted (i.e. household surveys, rapid rural appraisals, well inventories) (Figure 1). The ultimate aim of GroFutures is to generate new evidence and policy relevant insights to open up new pathways towards more sustainable and ‘pro-poor’ groundwater futures in the wider region.

Figure 1. Characterising Groundwater Development Pathway

Slide1

Six groundwater development pathways by the GroFutures Social Science Team during the course of the research. These ‘stylised’ pathways are representative of broader trends found in the three basin observatories. Each has been characterised in terms of its socio-economic functions; physical dimensions; stage of development; technology; ownership, management and governance arrangements; legal aspects of land and water access; alignment with national policy; and – importantly – its implications for poor water users (a key consideration of the project).

To analyse the longer-term sustainability of groundwater in the basins, the GroFutures Physical Science Team attempted to ‘stress test’ or quantify the impacts of groundwater development pathways, together with the impacts of climate and land-use change, on groundwater recharge and storage in each basin. Employing a groundwater flow model using MODFLOW-2005, run via using the open-source, GIS-based interface (QGIS) that has been developed as part of the newly available FREEWAT platform under a HORIZON 2020 project, the team assessed the hydraulic impacts of pumping under a range of boundary conditions, including variable recharge, over different time scales. These impacts were represented in a set of maps for selected sub-basins in which our social science and physical science teams collected detailed primary hydrogeological and socio-technical data and also drew on relevant secondary information.

A simplified sketch was also prepared to provide a visual representation of each pathway. A key assumption is that these pathways may well co-exist over time and meet the needs of different users. However, there may be cases where there is serious competition and trade-offs between them, leading to positive and negative impacts for different water users and for the environment.

The six pathways and the summary of the modelling ‘stress testing’ for the Great Ruaha and Upper Awash Basins are outlined below. The maps below show the ‘baseline’ groundwater level for each of these, without any pumping. For each pathway, a possible arrangement of wells is suggested, which extract specified volumes at specified depths. The pumping in each pathway gives a new groundwater level, lower than the baseline, projected five years into the future. How much lower depends on the amount of pumping. The new groundwater level for each pathway, can be compared to this baseline. The diagrams and maps presented here come from the pathways described for the Upper Awash. The first five pathways affect the shallow aquifer, while the large-scale commercial agriculture pathway influences the deeper Upper Basaltic Aquifer.

Pathway 1: Small-scale, self-supply for multiple uses

Slide2

Tanzania: Evident now in this basin

The impact of this pathway on the water table is minimal: groundwater levels fall less than 2 metres over the entire study area with a decline of less than 1 metre over half of the study area. This pumping is not expected to impact the area covered by wetlands or their operation.

Ethiopia: Evident now in this basin

The impact of this pathway on the water table is minimal: groundwater levels fall less than 2 metres over the entire study area with a decline of less than 1 metre over ~70% of the study area. This pumping from shallow wells (<80 m below ground level) is not expected to impact baseflow to streams.

Pathway 2: Small-scale private supply for smallholder intensified agriculture

Slide3

Tanzania:  Not evident yet though promoted in policy

The impact of this pathway on the water table is moderate: groundwater levels decline up to 4 metres over approximately 40% of the study area with declines of less than 3 metres in 60% of the study area. This pumping may locally impact the yields and operation of shallow wells; the impact on wetland extent or operation is not expected to be substantial.

Ethiopia: Evident now in this basin

The impact of this pathway on the water table is moderate: groundwater levels decline 2 – 3 metres over approximately 25% of the study area with declines of less than 2 metres in 65% of the study area. This pumping from shallow wells (<80 m below ground level) may locally impact yields and operation of shallow wells; the impact on baseflow to streams is not expected to be substantial.

Pathway 3: Medium-scale municipal supply for multiple uses

Slide4

Tanzania: Evident now in this basin

The impact of this pathway on the water table is moderate: groundwater levels decline less than 3 metres over the entire study with declines of less than 2 metres over half of the study area. This pumping may locally impact the yields and operation of shallow wells; the impact on wetland extent or operation is expected to be minimal.

Ethiopia: Evident now in this basin

The impact of this pathway on the water table is moderate: groundwater levels decline less than 3 metres over the entire study with declines of less than 2 metres over 70% of the study area. This pumping from shallow wells (<80 m below ground level) may locally impact the yields and operation of shallow wells; the impact on baseflow to streams is expected to be minimal.

Pathway 4: Medium-scale private supply for commercial agriculture

Slide5

 Tanzania: Not yet evident in this basin

The impact of this pathway on the water table is moderate: groundwater levels fall up to 4 metres in approximately 40% of the study area with declines of less than 3 metres in 60% of the study area. This pumping may locally impact the yields and operation of some shallow wells; the impact on wetland extent or operation is expected to be minimal.

Ethiopia: Evident now in this basin

The impact of this pathway on the water table is substantial: groundwater levels decline between three and five metres over approximately 28% of the study area with declines of less than 3 metres in 60% of the study area. This pumping from shallow wells (<80 m below ground level) is expected to impact yields and operation of some shallow wells as well as baseflow to streams.

Pathway 5: Medium-scale private supply for livestock husbandry

Slide6

Tanzania: Not yet evident in this basin

The impact of this pathway on the water table is moderate: groundwater levels fall up to 4 metres in approximately 40% of the study area with declines of less than 3 metres in 60% of the study area. This pumping may locally impact the yields and operation of some shallow wells; the impact on wetland extent or operation is expected to be minimal.

Ethiopia: Not yet evident in this basin

The impact of this pathway on the water table is substantial: groundwater levels decline between 3 and 5 metres over approximately 28% of the study area with declines of less than 3 metres in 60% of the study area. This pumping from shallow wells (<80 m below ground level) is expected to impact locally the yields and operation of some shallow wells as well as baseflow to streams.

Pathway 6: Large-scale private supply for commercial agriculture

Slide7

 Tanzania: Not evident yet

The impact of this pathway on the water table is substantial: groundwater levels fall 4 to 6 metres in approximately half of the study area. This intensive pumping of groundwater would impact the yields and operation of shallow wells; intensive pumping would also reduce the supply of water to wetlands impacting the extent and functioning of wetlands and related ecosystem services.

Ethiopia: Evident now in this basin

The impact of this pathway on the water table is very substantial: groundwater levels decline by more than 5 metres over approximately 27% of the study area with declines of 3 – 5 metres over 55% of the study area. This intensive, dry-season pumping of groundwater from deep wells (180 to 300 m below ground level) would impact the yields and operation of deep wells.

 Analysing the Stress-Tested Pathways

In June and July 2019, colleagues from Institute of Development Studies (IDS) and the ESRC STEPS Centre, the International Water Management Institute (IWMI) and University College London (UCL), in collaboration with partners at Sokoine University of Agriculture (SUA) and Addis Ababa University (AAU), hosted two multi-stakeholder workshops at which the groundwater development pathways were assessed using Multicriteria Mapping (MCM) (Figure 2).

Figure 2. Participants at the GroFutures Multi-stakeholder Workshops in Tanzania and Ethiopia

Slide8

MCM is multi-stage interview and engagement approach which helps stakeholders to explain their views and priorities in a structured and systematic way without necessarily identifying a single ‘best’ decision but to highlight underlying criteria that influence people’s perceptions of different options or pathways. The GroFutures team used MCM software developed by the University of Sussex and STEPS Centre with stakeholders representing a range of actor groups from local to basin to national levels with knowledge and interest in groundwater development and management.

In both workshops, the GroFutures team trained a group of Research Assistants recruited through SUA and AAU to serve as MCM facilitators in the workshops. The invited participants represented a range of stakeholder groups – e.g. local domestic water users; local irrigators; district agricultural and water officials; NGO representatives; national agriculture and water officials; private sector representatives; livestock sector representatives (Tanzania). This allowed the team to cluster them into specific interest groups. Each group was assigned one facilitator to assist them in reviewing the six ‘stress-tested’ pathways and analysing them against a core set of criteria provided by the GroFutures Team – i.e. equitable access; environmental sustainability; and ease of operation and maintenance – as well as their own specific criteria.

The groups spent the afternoon of the first day of the workshop defining their criteria and then used the morning of the second day to scoring the pathways against the core criteria and their own additions. For each criterion and pathway, an ‘optimistic’ and ‘pessimistic’ score was given on a scale of 0 (low) to 100 (high). The facilitators encouraged the participants to explain why they used each criterion and scored each pathway as they did.

This information was captured in the MCM software so that we had a clear description of the decision-making behind the scoring. After they completed the scoring, participants were invited to weight their criteria from most to least important, to add further insights into their preferences.

After all participants have done this, the researchers can combine the data from each participant and analyse the whole data set to understand similarities and differences between groups.

Slide9

 

The Top 4 Welfare Priorities for Kwale County, Kenya

My name is Jacob Katuva and I’m a researcher with Oxford University. I largely work in the water and poverty area. My research has been in Kenya – Kwale County specifically – where I’ve been looking at the links between water and welfare. Kwale County has a population of close to 900,000 people. The majority of the people there – over 70% – live below the poverty line and the main source of water for the community drinking water supplies is groundwater through handpumps.

We did a socioeconomic survey in Kwale County where we interviewed 3500 households or thereabouts in the year 2014. We repeated the same survey on the same households again in the year 2015 and the year 2016. In terms of analysis, we developed a welfare index from about 29 indicators from the socioeconomic survey and we had weights which were informed by Principle Component Analysis and this welfare index was computed for all the three years and we were able to actually see the changes in welfare and we were also able to map all the households and understand where the poor are and what their needs are.

Moving on, we investigated the links between water and welfare and what we found was that water services and here I’m talking about reliability, affordability, safety of water, and proximity to water infrastructure – all this actually accounts for at least 20% of the variation in household welfare which was quite substantial.

Findings from this work have been developed into policy briefs. Different policy briefs have been shared with different departments within the County Government, and also the Governor.

In terms of modelling welfare, we found that there are four priority goals that the County needs to focus on for sustainable development in the county. So if they want to improve people’s welfare they need to focus on four priority goals. Number one: The first goal is to maintain primary education while maintaining access to primary education; Number two is to improve access to reliable, affordable and safe drinking water sources within the county; Number three is to improve access to household energy sources by expanding the national grid or also investing in small scale solar systems; and the final priority goal was to end open defecation as this was the largest cause of reduced welfare in Kwale County.

More information:

Also from Gro for GooD:

Participants of the Arena in Arusha, Tanzania, identified a multitude of interconnected problems

by Jan Willem Foppen, re-posted from T-GroUP

Arusha is one of the faster-growing cities in Tanzania. The urbanization process is causing multiple interconnected problems. The first arena meeting organized as part of the T-Group Arusha Transition Management process was held by the local transition team with the aim to identify the existing community problems in Arusha. Below we briefly describe the findings from the first Arena meeting.

Continue reading Participants of the Arena in Arusha, Tanzania, identified a multitude of interconnected problems

New UPGro studies explore links between groundwater and poverty in rural and urban Africa

Thanks to additional support from NERC at the beginning of 2017, some of the world’s leading experts on groundwater and poverty were brought together to test the assumptions that we make about how much we know and understand about the links between groundwater access and poverty. Does improving groundwater access reduce poverty? Or are their cases where it can increase disparities between rich and poor? There is a lack of data and evidence to make firm conclusions and this challenges the research teams in UPGro and beyond to challenge their assumptions.

Part of the rapid study explored the issues around groundwater dependency of urban areas in tropical Africa.  What is perhaps shocking, is how little municipal water utilities in these areas monitoring, manage and understand the groundwater resources on which millions of people – their customers – depend. Furthermore, there are indication that private, self-supply, boreholes can make it harder for water utilities to get sufficient income from wealthier users to help cross-subsidise piped connections to the poor.

For more details, on these and many other findings, download the UPGro Working Papers: