The Politics of Water 3: Area Mechanics in Malawi

by Naomi Oates, re-posted from University of Sheffield

Competing narratives surround the role of ‘area mechanics’ in Malawi

In November 2017 I started my ‘politics of water’ blog as an outlet to share experiences and findings from my research in rural Malawi on water governance and service sustainability.

The first instalment describes my initial impressions of Balaka District while the second explores the relationship between extension workers and rural communities.

This might have left you wondering – what about everyone else?


Area Mechanics receive hands-on training in water point repairs (Author’s own)

Water services in Malawi are decentralised, at least in theory.  This means two things. Firstly, district councils, together with district water offices, are mandated to develop and monitor water infrastructure in rural areas.

Secondly, communities are expected to maintain and repair their water points with minimal external assistance. For more serious problems, local ‘area mechanics’ are their first port of call, followed by the district water office.

In reality, district water offices are severely under resourced, there are currently few area mechanics, and the effectiveness of community-based management varies considerably. However, where they are present, area mechanics are thought to play an important role in keeping water points functioning.

Area Mechanics: volunteers or entrepreneurs?

So what is an area mechanic? This sounds like a simple question, but the answers are complex and contradictory.

The area mechanics Thoko interviewed in Balaka for her MSc research tended to consider themselves, foremost, as volunteers working for the greater good of the community. After all, they were selected from the local community and have strong social ties with the people they serve. An area mechanic may be a relative, a neighbour or a fellow churchgoer, even the village headman himself. Trustworthiness was emphasised by communities as an important criteria.


This training manual describes area mechanics as ‘artisans in advanced hand pump repair operating on a payment basis’ (GoM 2015)

The depiction of area mechanics as volunteers has been echoed in my own conversations with extension staff and NGO workers, but in combination with another term – entrepreneur. According to national policy, area mechanics are meant to operate as independent businesspersons. They are given training and a few basic tools, after which they are expected to make a small profit to sustain their operations. They are also encouraged to sign written contracts with communities to clarify payment for services.

This model is clearly aimed at economic viability and is meant to incentivise area mechanics by providing them with an income. Arguably, the model has failed to gain traction locally because it ignores the social context in which area mechanics operate.

A third view is that area mechanics are integral to formal water governance arrangements – in other words part of, or plugging a gap in, the government’s extension system. This may not be stated explicitly, but is implicit in the use of government issued ID cards.

To give another example, area mechanics are sometimes (but not always) introduced to communities by a government representative in order to establish their legitimacy. Several of the area mechanics Thoko spoke to wanted their role to be formalised to enable them to negotiate fees with communities, or conversely in the hope of receiving material and financial support from government.

The ambiguity of water mechanics

Despite appearances, none of these narratives is mutually exclusive, and they may be employed at different times depending on the context. As one extension worker explained to me:

“Area mechanics are entrepreneurs by design and should make communities aware of that. They are supposed to have a signed agreement. The area mechanic needs to be paid, a little.”


Area mechanics often prefer working as a team – two heads being better than one! (Author’s own)

He then went on to clarify:

“It is not payment as such but a token of appreciation. It is up to them if they want to work for free. However they shouldn’t deny assistance to a Water Point Committee just because they don’t have money.”

The ambiguity surrounding area mechanics can be confusing and could be viewed as a failure of policy (or its implementation). But, in my view, that conclusion would be overly simplistic and misses the point.

The co-existence of these different narratives, or interpretations of policy, leaves room for negotiation and pragmatism. These are arguably important ingredients for success, especially when adapting policies to local realities. In short, the role of area mechanics in Malawi’s water governance system is not yet set in stone.

In addition to my PhD fieldwork this blog draws on previous work by the authors under the UPGro Hidden Crisis project. Check out our report on the political economy of rural water supplies in Malawi.

“They Gave Us Breakfast and a Good Meal”: Roles, Perceptions and Motivations of Water Point Area Mechanics in the Maintenance of Borehole Hand Pumps in Balaka District, Malawi

by Thokozani Mtewa, Evans Mwathunga, Wapumuluka, Mulwafu

Abstract

“In the rural areas of Malawi, water is accessed mostly through boreholes. The borehole and hand pump functionality concept is currently getting a central place in development agenda for the provision of affordable and safe water supply under the Sustainable Development Goals.

A study on area mechanics and borehole functionality was conducted in Balaka district in Malawi in 2017. The study used qualitative research methods of data collection using
political economy analysis to understand the role of Area Mechanics (AMs), their relationships with water point committees and other stakeholders, their perceptions,
motivations and challenges. Questionnaires and an audio recorder were employed to
collect data from individual interviews and focus groups.

The study findings revealed that even though the system of AMs is well defined in
policy, in practice things are done differently. The AMs defined their jobs differently; from entrepreneurs (10%) to community volunteers (90%) and the sizes of catchment areas of AMs are mostly divided informally and unequally which affects service delivery.
The study also found AMs are motivated by both monetary and non-monetary benefits
from the communities under their jurisdictions.

Consequently, overall the level of incentives and disincentives seem to have affected
their maintenance service provision as well as their relationships with other water point
stakeholders. For proper functioning of an AM system as part of groundwater infrastructure, this paper therefore proposes the need to revise the policy and procedures in training, selection and allocation of AMs as well regular short term trainings to area mechanics at district level.”

Source: Conference Abstract

:: New UPGro paper :: Rainfall and groundwater use in rural Kenya

Thomson, P.; Bradley D,;Katilu;Katuva J.;Lanzonia, M.; Koehler J.; Hope, R. Rainfall and groundwater use in rural Kenya, Science of The Total Environment, Volume 649, 1 February 2019, Pages 722-730

Key Points

  • As part of the Gro for GooD study in Kwale County, Kenya, UPGro researchers noticed then when comparing data collected from 266 Smart Handpumps and 19 raingauges that:
    • there was a 68% reduction in pump use on the day immediately following heavy rain, as well as
    • a 34% reduction in groundwater use during the wet season compared to the dry season, suggesting a large shift from improved to unimproved sources in the wet season.
  • This data was compared to household survey data collected by the researchers, and the relationship between rainfall and pumping was modelled and tested.
  • In this area rainwater harvesting was widespread and only 6% of households reported handpumps as their sole source of drinking water in the wet season, compared to 86% in the dry season.
  • Whilst rainwater harvesting can be a safe source of water it requires the collection and storage to be well designed and built.
  • This work provides empirical evidence that the existence of improved water supplies does not guarantee their use and health benefits may not be as expected.

Long lasting rural water supplies in tough environments: lessons from Kenya

by Dr Tim Foster (from the Oxwater blog)

Having just published the fourth instalment in a series of papers examining rural supply sustainability on the south coast of Kenya, it is timely to reflect upon some of the common threads that emerge from these related but discrete studies. Throughout our investigations we have examined rural water sustainability – and the determinants thereof – from all sorts of angles, including repair timehousehold financial contributionsrevenue collection longevitywater source preferences, and – most recently – operational lifespan.

Continue reading Long lasting rural water supplies in tough environments: lessons from Kenya

New UPGro paper: “Risk Factors associated with rural water supply: A 30-year retrospective study of handpumps on the south coast of Kenya”

2018 promises to be really interesting one as the UPGro (Unlocking the Potential of Groundwater for the Poor) reaches maturity. There is already a lot published since 2014 (https://upgro.org/publications-papers/peer-reviewed-journal-papers/) and here is a new one, which will be of interest to RWSN members – as it has been written by active RWSN members:

“Risk Factors associated with rural water supply: A 30-year retrospective study of handpumps on the south coast of Kenya”

By Tim Foster, Juliet Willetts, Mike Lane, Patrick Thomson, Jacob Katuva, Rob Hope

Key Points

  • This paper build on previous handpump & water point functionality work done by RWSN, the UPGro Gro For GooD and UPGro Hidden Crisis projects and recent analysis by the University of North Carolina
  • Research focuses on 337 Afridev handpumps installed in Kwale County, Kenya, under a SIDA financed programme between 1983-1995 that were identified and mapped in 2013 (out of 559 recorded installations by the programme in that area).
  • 64% were still working after 25+ years
  • They conclude that risk of failure increases most significantly in relation to:
    • Salinity of the groundwater
    • Depth of the static groundwater level
    • When the water comes from an unconsolidated sand aquifers
    • Distance to spare parts suppliers

You can read and download the paper here: https://www.sciencedirect.com/science/article/pii/S0048969717337324

and https://upgro.org/consortium/gro-for-good/

Supplementary info and water point data:

And in case you missed it – this is another recent paper that is readable and useful, albeit more for urban/peri-urban areas and small towns:

Grönwall, J. & Oduro-Kwarteng, Groundwater as a strategic resource for improved resilience: a case study from peri-urban Accra S. Environ Earth Sci (2018) 77: 6. https://doi.org/10.1007/s12665-017-7181-9

 

Figure: Kaplan-Meier estimates of the survival functions for Afridev handpumps in Kwale.

New: “Can ‘functionality’ save the community management model of rural water supply?

We are pleased to share a new UPGro paper from Luke Whaley and Prof. Frances Cleaver (Sheffield University) of the Hidden Crisis study – Can ‘functionality’ save the community management model of rural water supply?”

It is primarily a literature review paper so many elements will be familiar to rural water practitioners, however, Whaley and Cleaver are coming from a social science perspective so they highlight that previous analysis has focused on community management of water points as a “techno-managerial exercise” that largely ignores from broader social, political and cultural rules and relations around power – which groups and individuals have power over others and how is that used (or not used).

So what? The author’s suggest that current dialogue on water point functionality is not enough to save Community Based Management, because there is often a wider problem in with the under-resourcing of local government (and governance) and that more work is needed to help develop context-specific management, “rather than attempting to tweak the current blueprint of development the next ‘big thing’”

The full open access paper can be read and downloaded from Science Direct

Please take some time to read this and feel free to discuss – and argue! – about it in the RWSN Sustainable Services community

10 things to know about groundwater: 9 & 10

Hidden Treasure: 10 reasons to know more about groundwater / 2 priorities to take seriously – briefing note

What to find out more or get involved? Join the RWSN Sustainable Groundwater Development community on Dgroups.

9. In rural areas groundwater is often the cheapest source of safe drinking water

The capital cost of a borehole and handpump is about USD40 per person (say USD1.50 per person per year). The recurrent costs are about USD4.50 per person per year. The total is about USD6.00 per person per year. Piped schemes cost about twice as much.

[Source: WASHCost Working Paper 8, 2013, IRCwash.org]

10. In urban areas many people use shallow ground-water despite the fact that it is very vulnerable to pollution

The high cost of connection to piped water services makes it more attractive to use a private well despite the poor water quality

New Picture

[Source: Danert, K, Adekile, D and Gesti Canuto, J (2014) Manually Drilled Boreholes: Providing water in Nigeria’s Megacity of Lagos and Beyond, Skat Foundation http://www.rural-water-supply.net/en/resources/details/618]